Effect of Microgravity on the Crystallization of Cardiotoxin from the Venom of Spectacled Cobra Naja naja

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Cardiotoxins, which belong to the family of three-finger toxins, are the main components of cobra venom. They exhibit various types of biological activity, including antimicrobial and cytotoxic against cancer cells. Data on the minimal structural differences between individual toxins are necessary for understanding the molecular mechanisms of their action. This information can be obtained by high-resolution X-ray diffraction analysis. The influence of microgravity on the crystal packing and diffraction quality of crystals of cardiotoxin from cobra Naja naja has been investigated. Cardiotoxin crystals, which were grown on the International Space Station, provided maximally high resolution for the structure of this toxin. Protein crystallized extremely in the hexagonal space group, whereas more than half of crystals grown under laboratory conditions belonged to the orthorhombic system.

Sobre autores

K. Dubova

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: lera@crys.ras.ru
Россия, Москва; Россия, Москва

P. Dubovskii

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

Email: lera@crys.ras.ru
Россия, Москва

Yu. Utkin

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

Email: lera@crys.ras.ru
Россия, Москва

V. Samygina

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Autor responsável pela correspondência
Email: lera@crys.ras.ru
Россия, Москва; Россия, Москва

Bibliografia

  1. Khalil A., Elesawy B.H., Ali T.M. et al. // Molecules. 2021. V. 26. P. 4941. https://doi.org/10.3390/molecules26164941
  2. Dubovskii P.V., Efremov R.G. // Expert Rev. Proteomics. 2018. V. 15. P. 873. https://doi.org/10.1080/14789450.2018.1537786
  3. Kalita B., Utkin Y.N., Mukherjee A.K. // Toxins (Basel). 2022. V. 14. P. 839. https://doi.org/10.3390/toxins14120839
  4. Joubert F.J. // Eur. J. Biochem. 1977. V. 74. P. 387. https://doi.org/10.1111/j.1432-1033.1977.tb11403.x
  5. Gayatri S., Gorai B., Sivaraman T. // Res. J. Pharm. Biol. Chem. Sci. 2016. V. 7. P. 936.
  6. Konshina A.G., Dubovskii P.V., Efremov R.G. // Curr. Protein Pept. Sci. 2012. V. 13 (6). P. 570.
  7. Дубовский П.В., Уткин Ю.Н. // Acta Naturae. 2014. Т. 6. № 3. С. 12.
  8. Chien K.Y., Chiang C.M., Hseu Y.C. // J. Biol. Chem. 1994. V. 269. P. 14473.
  9. Dubovskii P.V., Ignatova A.A., Alekseeva A.S. // Toxins. 2022. V. 15. P. 6. https://doi.org/10.3390/toxins15010006
  10. Dubovskii P.V., Dubova K.M., Bourenkov G. et al. // Toxins. 2022. V. 14. P. 149. https://doi.org/10.3390/toxins14020149
  11. Luna A., Meisel J., Hsu K. et al. // NPJ Microgravity. 2020. V. 6. P. 12. https://doi.org/10.1038/s41526-020-0102-3
  12. Shabalin I.G., Serov A.E., Skirgello O.E. et al. // Crystallography Reports. 2010. V. 55 P. 806. https://doi.org/10.1134/S1063774510050159
  13. Timofeev V., Samygina V. // Crystals. 2022. V. 13. P. 71. https://doi.org/10.3390/cryst13010071
  14. Esposito L., Sica F., Sorrentino G. et al. // Acta Cryst. D. 1998. V. 54. P. 386. https://doi.org/10.1107/s0907444997011992
  15. Dubova K.M., Sokolov A.V., Gorbunov N.P. et al. // Crystallography Reports. 2018. V. 63. P. 951. https://doi.org/10.1134/S1063774518060111
  16. Tanaka H., Inaka K., Sughiyama Sh. // J. Synchrotron Rad. 2004. V. 11. P. 45. https://doi.org/10.1107/S0909049503023446
  17. Takahashi S., Tsurumura T., Aritake K. et al. // Acta Cryst. F. 2010. V. 66. P. 846. https://doi.org/10.1107/S1744309110020828
  18. Boyko K.M., Timofeev V.I., Samygina V.R. et al. // Crystallography Reports. 2016. V. 61. № 5. P. 718. https://doi.org/10.1134/S1063774516050059
  19. Kabsch W. // Acta Cryst. D. 2010. V. 66. P. 133. https://doi.org/10.1107/S0907444909047374
  20. Evans P.R., Murshudov G.N. // Acta Cryst. D. 2013. V. 69. P. 1204. https://doi.org/10.1107/S0907444913000061
  21. Agirre J., Atanasova M., Bagdonas H. et al. // Acta. Cryst. D. 2023. V. 79. P. 449. https://doi.org/10.1107/ S2059798323003595
  22. Schrödinger L., DeLano W. 2020. PyMOL. http://www.pymol.org/pymol
  23. Chruszcz M., Potrzebowski W., Zimmerman M.D. et al. // Protein Sci. 2008. V. 17. P. 623. http://www.proteinscience.org/cgi/doi/ 10.1110/ps.073360508
  24. Shabalin I.G., Tikhonova T.V., Polyakov K.M. et al. // EMBL Annual. 2007. Rep. 2. P. 109.
  25. Eistrikh-Heller P.A., Rubinsky S.V., Samygina V.R. et al. // Crystallography Reports. 2021. V. 66. P. 777. https://doi.org/10.1134/S1063774521050059
  26. Inaka K., Takahashi S., Aritake K. et al. // Cryst. Growth Des. 2011. V. 11. P. 2107. https://doi.org/10.1021/cg101370v
  27. Rahman R.N., Ali M.S., Leow T.C. et al. // Gravitational and Space Biology. 2010. V. 23. P. 89.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (181KB)
3.

Baixar (415KB)
4.

Baixar (1MB)

Declaração de direitos autorais © К.М. Дубова, П.В. Дубовский, Ю.Н. Уткин, В.Р. Самыгина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies