Improvement of the Diffraction Properties of Thiocyanate Dehydrogenase Crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

During determination of the thiocyanate dehydrogenase (TcDH) structure difficulties have occurred, related to the fact that enzyme crystals have been either twinned or strongly anisotropic. The diffraction quality of crystals can be improved by using mutant forms as objects of a study or by studying the structure of a related enzyme from another organism. Based on the analysis of the oligomeric structure of TcDH, the mutant forms of the enzyme that are promising for improving the diffraction properties have been proposed. The crystals have been obtained and the structures of the TcDH mutant forms with the substitutions T169A and K281A have been solved. The structure of the mutant form with the substitution T169A is found to be similar to the previously solved structures. In the structure of the mutant form with the substitution K281A, a change in the tetramer structure that made twinning impossible has been detected.

Sobre autores

L. Varfolomeeva

Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences, 119071, Moscow, Russia

Email: larisaavarfolomeeva@gmail.com
Россия, Москва

K. Polyakov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia

Email: kmpolyakov@gmail.com
Россия, Москва

A. Komolov

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: larisaavarfolomeeva@gmail.com
Россия, Москва

T. Rakitina

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

Email: larisaavarfolomeeva@gmail.com
Россия, Москва; Россия, Москва

N. Dergousova

Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences, 119071, Moscow, Russia

Email: larisaavarfolomeeva@gmail.com
Россия, Москва

P. Dorovatovskii

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: larisaavarfolomeeva@gmail.com
Россия, Москва

K. Boyko

Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117071, Moscow, Russia

Email: boiko_konstantin@inbi.ras.ru
Россия, Москва

T. Tikhonova

Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences, 119071, Moscow, Russia

Email: larisaavarfolomeeva@gmail.com
Россия, Москва

V. Popov

Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences, 119071, Moscow, Russia

Autor responsável pela correspondência
Email: larisaavarfolomeeva@gmail.com
Россия, Москва

Bibliografia

  1. Sorokin D.Y., Tourova T.P., Lysenko A.M. et al. // Int. J. Syst. Evol. Microbiol. 2002. V. 52. P. 657. https://doi.org/10.1099/00207713-52-2-657
  2. Tikhonova T.V., Sorokin D.Y., Hagen W.R. et al // Proc. Natl. Acad. Sci. USA. 2020. V. 117. P. 5280. https://doi.org/10.1073/pnas.1922133117
  3. Paraskevopoulos K., Antonyuk S.V., Sawers R.G. et al. // J. Mol. Biol. 2006. V. 362. P. 55. https://doi.org/10.1016/j.jmb.2006.06.064
  4. Lebedev A.A., Vagin A.A., Murshudov G.N. // Acta Cryst. D. 2006. V. 62. P. 83. https://doi.org/10.1107/S0907444905036759
  5. Murshudov G.N., Skubák P., Lebedev A.A. et al. // Acta Cryst. D. 2011. V. 67. P. 355. https://doi.org/10.1107/S0907444911001314
  6. Campeotto I., Lebedev A., Schreurs A.M.M. et al. // Sci. Rep. 2018. V. 8. P. 14876. https://doi.org/10.1038/s41598-018-32962-6
  7. Yeates T.O. // Methods Enzymol. 1997. V. 276. P. 344. https://doi.org/10.1016/S0076-6879(97)76068-3
  8. Padilla J.E., Yeates T.O. // Acta Cryst. D. 2003. V. 59. P. 1124. https://doi.org/10.1107/S0907444903007947
  9. Yang F., Dauter Z., Wlodawer A. // Acta Cryst. D. 2000. V. 56. P. 959. https://doi.org/10.1107/S0907444900007162
  10. Derewenda Z. S. // Acta Cryst. D. 2010. V. 66. P. 604. https://doi.org/10.1107/S090744491000644X
  11. Longenecker K.L., Garrard S.M., Sheffield P.J., Derewenda Z.S. // Acta Cryst. D. 2001. V. 57. P. 679. https://doi.org/10.1107/S0907444901003122
  12. Malawski G.A., Hillig R.C., Monteclaro F. et al. // Protein Sci. 2006. V. 15. P. 2718. https://doi.org/10.1110/ps.062491906
  13. Neau D.B., Gilbert N.C., Bartlett S.G. et al. // Acta Cryst. F. 2007. V. 63. P. 972. https://doi.org/10.1107/S1744309107050993
  14. Backmark A., Nyblom M., Törnroth-Horsefield S. et al. // Acta Cryst. D. 2008. V. 64. P. 1183. https://doi.org/10.1107/S090744490802948X
  15. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184. https://doi.org/1002/crat.201900184
  16. Kabsch W. // Acta Cryst. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
  17. Vagin A., Teplyakov A. // Acta Cryst. D. 2010. V. 66. P. 22. https://doi.org/10.1107/S0907444909042589
  18. Winn M.D., Ballard C.C., Cowtan K.D. et al. // Acta Cryst. D. 2011. V. 67. P. 235. https://doi.org/10.1107/S0907444910045749
  19. Emsley P., Lohkamp B., Scott W.G., Cowtan K. // Acta Cryst. D. 2010. V. 66. P. 486. https://doi.org/10.1107/S0907444910007493
  20. Krissinel E., Henrick K. // J. Mol. Biol. 2007. V. 372. P. 774. https://doi.org/10.1016/j.jmb.2007.05.022

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (1MB)
4.

Baixar (1MB)

Declaração de direitos autorais © Л.А. Варфоломеева, К.М. Поляков, А.С. Комолов, Т.В. Ракитина, Н.И. Дергоусова, П.В. Дороватовский, К.М. Бойко, Т.В. Тихонова, В.О. Попов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies