Effect of Reversion Back to Cys11 on the Structure and Function of S11C Cys-free Nt.BspD6I

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The three-dimensional structure of recombinant nicking endonuclease S11C Cys-free Nt.BspD6I was determined at 1.85 Å resolution. Nickase S11C Cys-free Nt.BspD6I was produced by the reversion back to Cys11 in Cys-free Nt.BspD6I using site-directed mutagenesis. An analysis of the crystal structure of nickase S11C Cys-free Nt.BspD6I demonstrated that the reversion back to Cys11 induces significant conformational changes in the recognition domain of nickase, which are accompanied by changes in its functions, such as a decrease in the affinity to DNA, the loss of the ability to undergo oligomerization, and high activity of restriction endonuclease S11C Cys-free R.BspD6I.

Sobre autores

R. Artyukh

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

B. Fatkhullin

Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

V. Antipova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

T. Perevyazova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

G. Kachalova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Email: rimmaartyukh@gmail.com
Россия, Пущино

A. Yunusova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia

Autor responsável pela correspondência
Email: rimmaartyukh@gmail.com
Россия, Пущино

Bibliografia

  1. Wang W-C., Mao H., Ma D.-D., Yang W-X. // Front. Mar. Sci. 2014. V. 1. https://doi.org/10.3389/fmars.2014.00034
  2. Holliday G.L., Mitchell J.B., Thornton J.M. // J. Mol. Biol. 2009. V. 390. P. 560. https://doi.org/10.1016/j.jmb.2009.05.015
  3. Ribeiro A.J.M., Tyzack J.D., Borkakoti N. et al. // J. Biol. Chem. 2020. V. 295. P. 314. https://doi.org/10.1074/jbcREV 119.006289
  4. Leichert L.I., Jakob U. // Antioxid. Redox Signal. 2006. V. 8 (5–6). P. 763. https://doi.org/10.1089/ars.2006.8.763
  5. Kachalova G.S., Rogulin E.A., Yunusova A.K. et al. // J. Mol. Biol. 2008. V. 384 (2). P. 489. https://doi.org/10.1016/j.jmb.2008.09.033
  6. Artyukh R.I., Fatkhullin B.F., Kachalova G.S. et al. // Biochim. Biophys. Acta – Proteins Proteom. 2022. V. 1870 (3). P. 140756. https://doi.org/10.1016/j.bbapap.2022.140756
  7. Zheleznaya L.A., Perevyazova T.A., Alzhanova D.V., Matvienko N.I. // Biochemistry. 2001. V. 66. P. 989.
  8. Yunusova A.K., Rogulin E.A., Artyukh R.I. et al. // Biochemistry. 2006. V. 71. P. 815.
  9. Rogulin E.A., Perevyazova T.A., Zheleznaya L.A., Matvienko N.I. // Biochemistry. 2004. V. 69 (10). P. 1123. https://doi.org/10.1023/b:biry.0000046886.19428.d5
  10. Laemmli U.K. // Nature. 1970. V. 227 (5259). P. 680. https://doi.org/10.1038/227680a0
  11. Hellman L.M., Fried M.G. // Nat. Protoc. 2007. V. 2 (8). P. 1849. https://doi.org/10.1038/nprot.2007.249
  12. Kabsch W. // Acta Cryst. D. 2010. V. 66. Pt. 2. P. 125. https://doi.org/10.1107/S0907444909047337
  13. Kabsch W. // Acta Cryst. D. 2010. V. 66. Pt. 2. P. 133. https://doi.org/10.1107/S0907444909047374
  14. Battye T.G., Kontogiannis L., Johnson O. et al. // Acta Cryst. D. 2011. V. 67. Pt. 4. P. 271. https://doi.org/10.1107/S0907444910048675
  15. Evans P. // Acta Cryst. D. 2006. V. 62. Pt. 1. P. 72. https://doi.org/10.1107/S0907444905036693
  16. Murshudov G.N., Vagin A.A., Dodson E.J. // Acta Cryst. D. 1997. V. 53. Pt. 3. P. 240. https://doi.org/10.1107/S0907444996012255
  17. Abrosimova L.A., Samsonova A.R., Perevyazova T.A. // Mol. Biol. (Rus). 2020. V. 54. (4). P. 667. https://doi.org/10.31857/S0026898420040023
  18. Goodsell D.S., Olson A.J. // Annu. Rev. Biophys. Biomol. Struct. 2020.V. 29. P. 105. https://doi.org/10.1146/annurev.biophys.29.1.105
  19. Santos J., Pujols J., Pallarès I. et al. // Comput. Struct. Biotechnol. J. 2020. V. 18. P. 1403. https://doi.org/10.1016/j.csbj.2020.05.026
  20. Sekerina S.A., Grishin A.V., Riazanova A.I. et al. // Russ. J. Bioorg. Chem. 2012. V. 38 (4). P. 431. https://doi.org/10.1134/s1068162012040127

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (537KB)
3.

Baixar (1MB)
4.

Baixar (227KB)
5.

Baixar (521KB)
6.

Baixar (898KB)

Declaração de direitos autorais © Р.И. Артюх, Б.Ф. Фатхуллин, В.Н. Антипова, Т.А. Перевязова, Г.С. Качалова, А.К. Юнусова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies