Preliminary X-ray Study of Crystals Obtained by Co-Crystallization of Hypoxanthine‒Guanine Phosphoribosyltransferase from Escherichia coli and Pyrazine-2-Carboxamide Derivatives

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A highly effective producer strain Escherichia coli C3030/pET23d+-EcHGPRT, allowing production of recombinant hypoxanthine‒guanine phosphoribosyltransferase from E. coli (EcHGPRT) in a soluble form, has been created. A method for isolating and purifying the recombinant protein has been developed. The specific activity against the natural substrate and pyrazine-2-carboxamide derivatives has been determined. Crystals of the EcHGPRT complexes with 3-hydroxypyrazine-2-carboxamide (T-1105) and 6-fluoro-3-hydroxypyrazine-2-carboxamide (T-705), suitable for X-ray diffraction analysis, have been grown by capillary counter diffusion. X-ray diffraction sets with a resolution of up to 2.4 and 2.5 Å have been collected at the ESRF synchrotron (France, station ID23-1) at a temperature of 100 K. The crystals belong to the sp. gr. P3(1)21; the independent part of the cell contains two enzyme molecules.

作者简介

Yu. Abramchik

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: ugama@yandex.ru
Россия, Москва; Россия, Москва

E. Zayats

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

Email: ugama@yandex.ru
Россия, Москва

V. Timofeev

Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia; National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: ugama@yandex.ru
Россия, Москва; Россия, Москва

M. Shevtsov

Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow oblast, Russia

Email: ugama@yandex.ru
Россия, Долгопрудный

M. Kostromina

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

Email: ugama@yandex.ru
Россия, Москва

I. Fateev

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

Email: ugama@yandex.ru
Россия, Москва

D. Yurovskaya

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

Email: ugama@yandex.ru
Россия, Москва

A. Karanov

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

Email: ugama@yandex.ru
Россия, Москва

I. Konstantinova

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

Email: ugama@yandex.ru
Россия, Москва

I. Kuranova

Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia; National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: ugama@yandex.ru
Россия, Москва; Россия, Москва

R. Esipov

Shemyakin‒Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia

编辑信件的主要联系方式.
Email: ugama@yandex.ru
Россия, Москва

参考

  1. Hucke F.I.L., Bestehorn-Willmann M., Bassetto M. et al. // Virus Genes. 2022. V. 58 (3). P. 188. https://doi.org/10.1007/s11262-022-01892-x
  2. De Vleeschauwer A.R., Lefebvre D.J., Willems T. et al. // Transbound. Emerg. Dis. 2016. V. 63 (2). P. e205. https://doi.org/10.1111/tbed.12255
  3. Hayden F.G., Shindo N. // Curr. Opin. Infect. Dis. 2019. V. 32 (2). P. 176. https://doi.org/10.1097/QCO.0000000000000532
  4. Delang L., Abdelnabi R., Neyts J. // Antiviral Res. 2018. V. 153. P. 85. https://doi.org/10.1016/j.antiviral.2018.03.003
  5. De Clercq E., Li G. // Clin. Microbiol. Rev. 2016. V. 29 (3). P. 695. https://doi.org/10.1128/CMR.00102-15
  6. Furuta Y., Takahashi K., Shiraki K. et al. // Antiviral Res. 2009. V. 82 (3). P. 95. https://doi.org/10.1016/j.antiviral.2009.02.198
  7. Furuta Y., Komeno T., Nakamura T. // Proc. Jpn. Acad. B. Phys. Biol. Sci. 2017. V. 93 (7). P. 449. https://doi.org/10.2183/pjab.93.027
  8. Lu J.W., Chen Y.C., Huang C.K. et al. // Antiviral Res. 2021. V. 195 P. 105188. https://doi.org/10.1016/j.antiviral.2021.105188
  9. Furuta Y., Takahashi K., Fukuda Y. et al. // Antimicrob. Agents Chemother. 2002. V. 46 (4). P. 977. https://doi.org/10.1128/AAC.46.4.977-981.2002
  10. Konstantinova I.D., Andronova V.L., Fateev I.V., Esipov R.S. // Acta Naturae. 2022. V. 14 (2). P. 16. https://doi.org/10.32607/actanaturae.11652
  11. Negru P.A., Radu A.F., Vesa C.M. et al. // Biomed. Pharmacother. 2022. V. 147. P. 112700. https://doi.org/10.1016/j.biopha.2022.112700
  12. Hung D.T., Ghula S., Aziz J.M.A. et al. // Int. J. Infect. Dis. 2022. V. 120. P. 217. https://doi.org/10.1016/j.ijid.2022.04.035
  13. Garcia-Lledo A., Gomez-Pavon J., Gonzalez Del Castillo J. et al. // Rev. Esp. Quimioter. 2022. V. 35 (2). P. 115. https://doi.org/10.37201/req/158.2021
  14. Naesens L., Guddat L.W., Keough D.T. et al. // Mol. Pharmacol. 2013. V. 84 (4). P. 615. https://doi.org/10.1124/mol.113.087247
  15. Sangawa H., Komeno T., Nishikawa H. et al. // Antimicrob. Agents Chemother. 2013. V. 57 (11). P. 5202. https://doi.org/10.1128/AAC.00649-13
  16. Shannon A., Selisko B., Le N.T. et al. // Nat. Commun. 2020. V. 11 (1). P. 4682. https://doi.org/10.1038/s41467-020-18463-z
  17. Eads J.C., Scapin G., Xu Y. et al. // Cell. 1994. V. 78 (2). V. 325. https://doi.org/10.1016/0092-8674(94)90301-8
  18. Schumacher M.A., Carter D., Roos D.S. et al. // Nat. Struct. Biol. 1996. V. 3 (10). P. 881. https://doi.org/10.1038/nsb1096-881
  19. Guddat L.W., Vos S., Martin J.L. et al. // Protein Sci. 2002. V. 11 (7). P. 1626. https://doi.org/10.1110/ps.0201002
  20. Shi W., Li C.M., Tyler P.C. et al. // Biochemistry. 1999. V. 38 (31). P. 9872. https://doi.org/10.1021/bi990664p
  21. Focia P.J., Craig 3rd S.P., Nieves-Alicea R. et al. // Biochemistry. 1998. V. 37 (43). P. 15066. https://doi.org/10.1021/bi981052s
  22. Shi W., Munagala N.R., Wang C.C. et al. // Biochemistry. 2000. V. 39 (23). P. 6781. https://doi.org/10.1021/bi000128t
  23. Monzani P.S., Trapani S., Thiemann O.H., Oliva G. // BMC Struct. Biol. 2007. V. 7 (59). https://doi.org/10.1186/1472-6807-7-59
  24. Takahashi S., Tsurumura T., Aritake K. et al. // Acta Cryst. F. 2010. V. 66 (7). P. 846. https://doi.org/10.1107/S1744309110020828
  25. Battye T.G., Kontogiannis L., Johnson O. et al. // Acta Cryst. D. 2011. V. 67 (4). P. 271. https://doi.org/10.1107/S0907444910048675
  26. Huchting J., Winkler M., Nasser H., Meier C. // ChemMedChem. 2017. V. 12 (9). P. 652. https://doi.org/10.1002/cmdc.201700116

补充文件

附件文件
动作
1. JATS XML
2.

下载 (96KB)
3.

下载 (798KB)

版权所有 © Ю.А. Абрамчик, Е.А. Заяц, В.И. Тимофеев, М.Б. Шевцов, М.А. Костромина, И.В. Фатеев, Д.О. Юровская, А.А. Каранов, И.Д. Константинова, И.П. Куранова, Р.С. Есипов, 2023

##common.cookie##