Structural Basis for Interactions between Influenza A Virus M2 Proton Channel and Adamantane-Based Antiviral Drugs

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Influenza A virus pandemics still remain a threat to global health. One class of antiviral drugs, namely, inhibitors of the specific viral enzyme neuraminidase, is predominantly used in the fight against these pandemics. These antivirals include zanamivir (Relenza™) and oseltamivir (Tamiflu™). The viral resistance to this class of compounds steadily increases. The M2 proton channel of influenza A virus is an alternative clinically proven target for antiviral therapy. However, many circulating virus strains bear amino acid mutations in the M2 protein, causing resistance to drugs of the adamantane series, M2 blockers, such as rimantadine and amantadine. Consequently, inhibitors targeting mutants of the M2 channel are urgently needed for public biosafety and health. This review is devoted to structural-functional interactions used in practice and mediated by the action of experimental drugs on the protein target, the transmembrane domain of the influenza virus M2 proton channel. An analysis of the experimental and model structural data available in open access is presented.

作者简介

A. Lashkov

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: alashkov83@gmail.com
Россия, Москва

T. Garaev

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya

Email: tmgaraev@gmail.com
ORCID iD: 0000-0002-3651-5730

PhD in biology, leading researcher of the Laboratory of Molecular Diagnostics

俄罗斯联邦, 123098, Moscow

S. Rubinsky

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: alashkov83@gmail.com
Россия, Москва

V. Samygina

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia; National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

编辑信件的主要联系方式.
Email: alashkov83@gmail.com
Россия, Москва; Россия, Москва

参考

  1. Thorlund K., Awad T., Boivin G. et al. // BMC Infect. Dis. 2011. V. 134. https://doi.org/10.1186/1471-2334-11-134
  2. Singh A., Soliman M. // Drug Des. Devel. Ther. 2015. V. 9. P. 4137. https://doi.org/10.2147/DDDT.S81934
  3. Lampejo T. // Eur. J. Clin. Microbiol. Infect. Dis. 2020. V. 39 (7). P. 1201. https://doi.org/10.1007/s10096-020-03840-9
  4. Sriwilaijaroen N., Suzuki Y. // Proc. Jpn. Acad. B. Phys. Biol. Sci. 2012. V. 88 (6). P. 226.
  5. Ленева И.А., Гуськова Т.А. // Русский медицинский журнал. 2008. Т. 29 (16). С. 3.
  6. Leneva I.A., Russell R.J., Boriskin Y.S. et al. // Antiviral Res. 2009. V. 81 (2). P. 132. https://doi.org/10.1016/j.antiviral.2008.10.009
  7. WHO Guidelines for Pharmacological Management of Pandemic Influenza A(H1N1) 2009 and other Influenza Viruses. WHO Geneva, 2010. Part I.
  8. Centers for Disease Control and Prevention Recommendations. CS HCVG-15-FLU-107. 2018.
  9. Scott C., Griffin S. // J. Gen. Virol. 2015. V. 96 (8). P. 2000. https://doi.org/10.1099/vir.0.000201
  10. Wang J., Wu Y., Ma C. et al. // PNAS. 2013. V. 110 (4). P. 1315. https://doi.org/10.1073/pnas.1216526110
  11. Nieto-Torres J.L., Verdia-Baguena C., Castano-Rodriguez C. et al. // Viruses. 2015. V. 7. P. 3552. https://doi.org/10.3390/v7072786
  12. Liang R., Swanson J.M.J., Madsen J.J. et al. // PNAS. 2016. V. 113 (45). P. 6955. https://doi.org/10.1073/pnas.1615471113
  13. Duong-Ly K.C., Nanda V., Degrado W.F. et al. // Protein Sci. 2005. V. 14 (4). P. 856. https://doi.org/10.1110/ps.041185805
  14. Krejcova L., Michalek P., Hynek D. et al. // J. Metallomics Nanotechnol. 2015. V. 1. P. 13.
  15. Sakaguchi T., Leser G.P., Lamb R.A. // J. Cell. Biol. 1996. V. 133 (4). P. 733. https://doi.org/10.1083/jcb.133.4.733
  16. Ichinohe T., Pang I.K., Iwasaki A. // Nat. Immunol. 2010. V. 11 (5). P. 404. https://doi.org/10.1038/ni.1861
  17. Rossman J.S., Lamb R.A. // Virology. 2011. V. 411 (2). P. 229. https://doi.org/10.1016/j.virol.2010.12.003
  18. Mould J.A., Li H.C., Dudlak C.S. et al. // J. Biol. Chem. 2000. V. 275 (12). P. 8592. https://doi.org/10.1074/jbc.275.12.8592
  19. Tang Y., Zaitseva F., Lamb R.A. et al. // J. Biol. Chem. 2002. V. 277 (42). P. 39880. https://doi.org/10.1074/jbc.M206582200
  20. Miao Y., Fu R., Zhou H.X. et al. // Structure. 2015. V. 23 (12). P. 2300. https://doi.org/10.1016/j.str.2015.09.011
  21. Hu F., Luo W., Hong M. // Science. 2010. V. 330 (6003). P. 505. https://doi.org/10.1126/science.1191714
  22. Venkataraman P., Lamb R.A., Pinto L.H. // J. Biol. Chem. 2005. V. 280 (22). P. 21463. https://doi.org/10.1074/jbc.M412406200
  23. Acharya R., Carnevale V., Fiorin G. et al. // PNAS. 2010. V. 107 (34). P. 15075. https://doi.org/10.1073/pnas.1007071107
  24. Thomaston J.L., Alfonso-Prieto M., Woldeyes R.A. et al. // PNAS. 2015. V. 112 (46). P. 14260. https://doi.org/10.1073/pnas.1518493112
  25. Holsinger L.J., Nichani D., Pinto L.H. et al. // J. Virol. 1994. V. 68 (3). P. 1551. https://doi.org/10.1128/JVI.68.3.1551-1563.1994
  26. Rossman J.S., Jing X., Leser G.P. et al. // Cell. 2010. V. 142 (6). P. 902. https://doi.org/10.1016/j.cell.2010.08.029
  27. Stouffer A.L., Acharya R., Salom D. et al. // Nature. 2008. V. 451. P. 596. https://doi.org/10.1038/nature06528
  28. Schnell J.R., Chou J.J. // Nature. 2008. V. 451. P. 591. https://doi.org/10.1038/nature06531
  29. Pielak R.M., Chou J.J. // Biomembranes. 2011. V. 1808 (2). P. 522. https://doi.org/10.1016/j.bbamem.2010.04.15
  30. Arroyo M., Beare A.S., Reed S.E. et al. // J. Antimicrob. Chemother. 1975. V. 1 (4 Suppl). P. 87. https://doi.org/10.1093/jac/1.suppl_4.87
  31. Vorobjev Y.N. // J. Biomol. Struct. Dyn. 2020. V. 39 (7). P. 2352. https://doi.org/10.1080/07391102.2020.1747550
  32. Dobson J., Whitley R.J., Pocock S. et al. // Lancet. 2015. V. 385 (9979). P. 1729. https://doi.org/10.1016/S0140-6736(14)62449-1
  33. Golan D.E., Armstrong E.J., Armstrong A.W. // Principles of pharmacology: the pathophysiologic basis of drug therapy. 4th ed. Philadelphia: Wolters Kluwer, 2017. P. 142, 199, 205t, 224t, 608, 698.
  34. Hay A.J., Wolstenholme A.J., Skehel J.J. et al. // EMBO J. 1985. V. 4. P. 3021. https://doi.org/10.1002/j.1460-2075.1985.tb04038.x
  35. Wang C., Takeuchi K., Pinto L.H. et al. // J. Virol. 1993. V. 67 (9). P. 5585. https://doi.org/10.1128/jvi.67.9.5585-5594.1993
  36. Sansom M.S., Kerr I.D. // Protein Eng. 1993. V. 6 (1). P. 65. https://doi.org/10.1093/protein/6.1.65
  37. Duff K.C., Gilchrist P.J., Saxena A.M. et al. // Virology. 1994. V. 202 (1). P. 287. https://doi.org/10.1006/viro.1994.1345
  38. Gandhi C.S., Shuck K., Lear J.D. et al. // J. Biol. Chem. 1999. V. 274 (9). P. 5474. https://doi.org/10.1074/jbc.274.9.5474
  39. Cady S.D., Mishanina T.V., Hong M. // J. Mol. Biol. 2009. V. 385 (4). P. 1127. https://doi.org/10.1016/j.jmb.2008.11.022
  40. Pielak R.M., Schnell J.R., Chou J.J. // Proc. Natl. Acad. Sci. 2009. V. 106. P. 7379. https://doi.org/10.1073/pnas.0902548106
  41. Bright R.A., Medina M.J., Xu X. et al. // Lancet. 2005. V. 366 (9492). P. 1175. https://doi.org/10.1016/S0140-6736(05)67338-2
  42. Дерябин П.Г., Гараев Т.М., Финогенова М.П. и др. // Вопросы вирусологии. 2019. Т. 64. Вып. 6. С. 268.
  43. Шибнев В.А., Гараев Т.М., Финогенова М.П. и др. // Химико-фармацевтический журнал. 2012. Т. 46. Вып. 1. С. 36.
  44. Дерябин П.Г., Гараев Т.М., Финогенова М.П. и др. // Бюллетень экспериментальной биологии и медицины. 2014. Т. 157 (1). С. 73.
  45. Garaev T.M., Odnovorov A.I., Lashkov A.A. et al. // Adv. Pharm. Bull. 2021. V. 11 (4). P. 700. https://doi.org/10.34172/apb.2021.079
  46. Thomaston J.L., Polizzi N.F., Konstantinidi A. et al. // J. Am. Chem. Soc. 2018. V. 140 (45). P. 15219. https://doi.org/10.1021/jacs.8b06741
  47. Thomaston J.L., Konstantinidi A., Liu L. et al. // Biochemistry. 2020. V. 59 (4). P. 627. https://doi.org/10.1021/acs.biochem.9b00971
  48. Thomaston J.L., Woldeyes R.A., Nakane T. et al. // PNAS. 2017. V. 114 (51). P. 13357. https://doi.org/10.1073/pnas.1705624114
  49. Thomaston J.L., Wu Y., Polizzi N. et al. // J. Am. Chem. Soc. 2019. V. 141 (29). P. 11481. https://doi.org/10.1021/jacs.9b02196

补充文件

附件文件
动作
1. JATS XML
2.

下载 (76KB)
3.

下载 (384KB)
4.

下载 (1MB)
5.

下载 (1MB)
6.

下载 (3MB)

版权所有 © А.А. Лашков, Т.М. Гараев, С.В. Рубинский, В.Р. Самыгина, 2023

##common.cookie##