SOLUTION-GROWN TRANS-STILBENE SINGLE CRYSTAL AND ITS SCINTILLATION PROPERTIES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Trans-stilbene single crystals are of great interest for researchers as scintillators characterized by a high specific light yield. Bulk trans-stilbene single crystals have been grown from an anisole solution. The transmission and photoluminescence spectra have been recorded, and the single-crystal photoluminescence quenching kinetics has been investigated. The scintillation properties of an element (17 × 12 × 5 mm in size) prepared from a grown trans-stilbene crystal, irradiated by γ radiation and X rays, have also been investigated. It is shown that the specific light yield of the obtained crystal is no less than that of a scintillation detector (31.5 × 10 mm) based on a trans-stilbene crystal grown from melt.

Sobre autores

M. Lyasnikova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: mlyasnikova@yandex.ru
Россия, Москва

A. Kulishov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: postva@yandex.ru
Россия, Москва

G. Yurasik

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; Center of Photochemistry, Federal Scientific Research Centre“Crystallography and Photonics,”Russian Academy of Sciences, Moscow, Russia

Email: postva@yandex.ru
Россия, Москва; Россия, Москва

V. Postnikov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: postva@yandex.ru
Россия, Москва

A. Karakash

SPC DOZA, Zelenograd, Moscow, 124498 Russia

Email: postva@yandex.ru
Россия, Зеленоград

A. Voloshin

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Autor responsável pela correspondência
Email: postva@yandex.ru
Россия, Москва

Bibliografia

  1. Birks J.B. The Theory and Practice of Scintillation Counting: International Series of Monographs on Electronics and Instrumentation. Pergamon Press Ltd, 1967. 662 p.
  2. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. 2-е изд. М.: Химия, 1984. 336 с.
  3. Gorbacheva T.E., Galunov N.Z., Lazarev I.V. et al. // J. Appl. Spectrosc. 2014. V. 81. P. 164. https://doi.org/10.1007/s10812-014-9904-y
  4. Arulchakkaravarthi A., Laksmanaperumal C.K., Santhanaraghavan P. et al. // J. Cryst. Growth. 2002. V. 246. P. 85. https://doi.org/10.1016/S0022-0248(02)01696-2
  5. Ai Q., Chen P., Feng Y., Xu Y. // AIP Conf. Proc. 2017. V. 1879. https://doi.org/10.1063/1.5000464
  6. Yamato S., Yamaji A., Kurosawa S. et al. // Opt. Mater. 2019. V. 94. P. 58. https://doi.org/10.1016/j.optmat.2019.04.051
  7. Hong I.H., Tan K.J., Toh M. et al. // J. Cryst. Growth. 2013. V. 363. P. 61. https://doi.org/10.1016/j.jcrysgro.2012.10.002
  8. Bhukkal S., Kumar B. // J. Cryst. Growth. 2020. V. 535. P. 125534. https://doi.org/10.1016/j.jcrysgro.2020.125534
  9. Будаковский С.В., Крайнов И.П., Мнацаканова Т.Р., Ткаченко В.Ф. Сцинтиллятор на основе монокристалла стильбена и способ его получения: патент SU 948171 A1. СССР: Государственный комитет по делам изобретений и открытий, 1998.
  10. Zaitseva N.P., Newby J., Hamel S. et al. // Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XI. 2009. V. 7449. P. 744911. https://doi.org/10.1117/12.829870
  11. Zaitseva N., Carman L., Glenn A. et al. // J. Cryst. Growth. 2011. V. 314. P. 163. https://doi.org/10.1016/j.jcrysgro.2010.10.139
  12. Carman L., Zaitseva N., Martinez H.P. et al. // J. Cryst. Growth. 2013. V. 368. P. 56. https://doi.org/10.1016/j.jcrysgro.2013.01.019
  13. Katoh R., Katoh S., Furube A. et al. // J. Phys. Chem. C. 2009. V. 113. P. 2961. https://doi.org/10.1021/jp807684m
  14. Birks J.B. Photophysics of aromatic molecules. London: Wiley-Interscience, 1970. 704 p.
  15. Клименков Е.Е., Кащук Ю.А., Красильников и др. // Приборы и техника эксперимента. 2004. Т. 2. С. 35.
  16. Маноменова В.Л., Степнова М.Н., Гребенев В.В. и др. // Кристаллография. 2013. Т. 58. С. 505. https://doi.org/10.7868/s0023476113030156
  17. Руднева Е.Б., Маноменова В.Л., Волошин А.Э. // Кристаллография. 2018. Т. 63. С. 963. https://doi.org/10.1134/s0023476118060255
  18. http://www.lnhb.fr/nuclear-data/nuclear-data-table/
  19. Harada J., Ogawa K. // J. Am. Chem. Soc. 2001. V. 123. P. 10884. https://doi.org/10.1021/ja011197d
  20. Kaminsky W. // J. Appl. Cryst. 2007. V. 40. P. 382. https://doi.org/10.1107/S0021889807003986
  21. Klapper H., Zaitseva N., Carman L. // J. Cryst. Growth. 2015. V. 429. P. 74. https://doi.org/10.1016/j.jcrysgro.2015.07.012
  22. Tranca D.C., Neufeld A.A. // J. Chem. Phys. 2009. V. 130. P. 141102. https://doi.org/10.1063/1.3116786
  23. Harihar P., Chen H., Stapor W.J. // Nucl. Instrum. Methods Phys. Res. A. 1994. V. 345. P. 500. https://doi.org/10.1016/0168-9002(94)90506-1

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (2MB)
4.

Baixar (1MB)
5.

Baixar (80KB)
6.

Baixar (591KB)
7.

Baixar (1MB)
8.

Baixar (226KB)
9.

Baixar (306KB)
10.

Baixar (291KB)
11.

Baixar (51KB)

Declaração de direitos autorais © М.С. Лясникова, А.А. Кулишов, Г.А. Юрасик, В.А. Постников, А.И. Каракаш, А.Э. Волошин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies