INVESTIGATION OF THE ULTRAFAST MAGNETIC DYNAMICS IN Co/Pt MULTILAYER STRUCTURES AND EXAMPLES OF OTHER STUDIES AT THE EUROPEAN XFEL FACILITY

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The European X-ray Free-Electron Laser (EuXFEL) Facility is the leading international scientific center for studying the structure and properties of materials using coherent X-rays with high temporal and spatial resolution. The results of the collaboration of the EuXFEL experts and the researchers of the ITMO University in 2015–2022 are briefly described. The unique possibilities of the EuXFEL are demonstrated by an example of studying the ultrafast magnetic dynamics by the researchers of the ITMO University in 2019.

Авторлар туралы

E. Lobanova

ITMO University, St. Petersburg, 197101 Russia; Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia

Email: elobanova@itmo.ru
Россия, Санкт-Петербург; Россия, Санкт-Петербург

S. Suturin

Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia

Email: alexey.romanov@niuitmo.ru
Россия, Санкт-Петербург

S. Molodtsov

European XFEL, Shenefeld, 22869 Germany dTU Bergakademie, Freiberg, 09599 Germany

Email: alexey.romanov@niuitmo.ru
Германия, Шенефельд

A. Romanov

ITMO University, St. Petersburg, 197101 Russia

Хат алмасуға жауапты Автор.
Email: alexey.romanov@niuitmo.ru
Россия, Санкт-Петербург

Әдебиет тізімі

  1. Koopmans B., Malinowski G., Dalla Longa F. et al. // Nat. Mater. 2010. V. 9. P. 259. https://doi.org/10.1038/nmat2593
  2. Kirilyuk A., Kimel A.V., Rasing T. // Rep. Prog. Phys. 2013. V. 76. P. 026501. https://doi.org/10.1088/0034-4885/76/2/026501
  3. Beaurepaire E., Merle J., Daunois A. et al. // Phys. Rev. Lett. 1996. V. 76. P. 4250. https://doi.org/10.1103/PhysRevLett.76.4250
  4. Stanciu C.D., Hansteen F., Kimelet A.V. et al. // Phys. Rev. Lett. 2007. V. 99. P. 047601. https://doi.org/10.1103/PhysRevLett.99.047601
  5. Zhang Y., Chen S., Cai Y. et al. // Engineering. 2020. https://doi.org/10.1016/j.eng.2020.06.019
  6. Lambert C.-H., Mangin S., Varaprasad B.S.D.Ch.S. et al. // Science. 2014. V. 345. P. 1337. https://doi.org/10.1126/science.1253493
  7. John R., Berritta M., Hinzke D. et al. // Sci. Rep. 2017. V. 7. P. 4114. https://doi.org/10.1038/s41598-017-04167-w
  8. Vahaplar K., Kalashnikova A.M., Kimel A.V. et al. // Phys. Rev. Lett. 2009. V. 103. P. 117201. https://doi.org/10.1103/PhysRevLett.103.117201
  9. Mangin S., Gottwald M., Lambert C.H. et al. // Nat. Mater. 2014. V. 13 (3). P. 286. https://doi.org/10.1038/nmat3864
  10. Radu I., Vahaplar K., Stamm C. et al. // Nature. 2011. V. 472 (7342). P. 205. https://doi.org/10.1038/nature09901
  11. Ostler T.A., Barker J., Evans R.F.L. et al. // Nat. Commun. 2012. V. 3 (1). P. 1. https://doi.org/10.1038/ncomms1666
  12. Gorchon J., Yang Y., Bokor J. et al. // Phys. Rev. B. 2016. V. 94. P. 020409. https://doi.org/10.1103/PhysRevB.94.020409
  13. Ellis M.O.A., Fullerton E.E., Chantrell R.W. // Sci. Rep. 2016. V. 6. P. 30522. https://doi.org/10.1038/srep30522
  14. Hadri E., Pirro M.S., Lambert P. et al. // Phys Rev. B. 2016. V. 94 (6). P. 064412. https://doi.org/10.1103/PhysRevB.94.064412
  15. Medapalli R., Afanasiev D., Kim D.K. et al. // Phys Rev. B. 2017. V. 96 (22). P. 224421. https://doi.org/10.1103/PhysRevB.96.224421
  16. El Hadri M.S., Hehn M., Mangin S. et al. // J. Phys. D: Appl. Phys. 2018. V. 51. P. 215054. https://doi.org/10.1088/1361-6463/aabf2b
  17. Pfau B., Schaffert S., Müller L. et al. // Nat. Commun. 2012. V. 3. P. 1100. https://doi.org/10.1038/ncomms2108
  18. Iacocca E., Liu T.-M., Reid A.H. et al. // Nat. Commun. 2019. V. 10. P. 1756. https://doi.org/10.1038/s41467-019-09577-0
  19. Porro M., Andricek L., Aschauer S. et al. // IEEE Trans. Nucl. Sci. 2021. V. 68. P. 1334. https://doi.org/10.1109/TNS.2021.3076602
  20. Sant T., Ksenzov D., Skorb E.V. et al. // Sci. Rep. 2017. V. 7. P. 15064. https://doi.org/10.1039/c6cp07456a
  21. Imoro N., Shilovskikh V.V., Nesterov P.V. et al. // ACS Omega. 2021. V. 6 (27). P. 17267. https://doi.org/10.1021/acsomega.1c01124
  22. Shilovskikh V.V., Timralieva A.A., Skorb E.V. et al. // Chem. A Europ. J. 2020. V. 26 (70). P. 16603. https://doi.org/10.1002/chem.202002947
  23. Shilovskikh, V., Timraliev A., Skorb E.V. et al. // Appl. Magn. Res. 2020. https://doi.org/10.1007/s00723-020-01254-6
  24. Orekhov N., Kondratyuk N., Skorb E.V. et al. // Cryst. Growth. Des. 2021. V. 21 (4). P.1984. https://doi.org/10.1021/acs.cgd.0c01285
  25. Mancuso C.A., Hickstein D.D., Grychtol P. et al. // Phys. Rev. A. 2015. V. 91. P. 031402. https://doi.org/10.1103/PhysRevA.91.031402
  26. Milošević D.B., Becker W. // Phys. Rev. A. 2016. V. 93. P. 063418. https://doi.org/10.1103/PhysRevA.93.063418
  27. Mancuso C.A., Hickstein D.D., Dorney K.M. et al. // Phys. Rev. A. 2016. V. 93. P. 053406. https://doi.org/10.1103/PhysRevA.93.053406
  28. Karlovets D.V., Serbo V.G., Surzhykov A. // Phys. Rev. A. 2021. V. 104 (2). P. 023101. https://doi.org/10.1103/PhysRevA.104.023101
  29. Volotka A., Samoilenko D., Surzhykov A. et al. // Ann. Phys. 2022. P. 2100252. https://doi.org/10.48550/arXiv.2212.06311
  30. Polimeno P., Magazzu A., Marago O.M. et al. // J. Quant. Spec. Radiat. Trans. 2018. V. 218. P. 131. https://doi.org/10.1016/j.jqsrt.2018.07.013
  31. Müller J., Scheer M., Schmid P. // Phys. Rev. Lett. 2013. V. 111. P. 034801. https://doi.org/10.1103/PhysRevLett.111.034801

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (268KB)
3.

Жүктеу (397KB)
4.

Жүктеу (464KB)
5.

Жүктеу (1MB)

© Е.Ю. Лобанова, С.М. Сутурин, С.Л. Молодцов, А.Е. Романов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>