MICROSTRUCTURE OF GEL FILMS OF BACTERIAL CELLULOSE SYNTHESIZED UNDER STATIC CONDITIONS OF CULTIVATION OF THE GLUCONACETOBACTER HANSENII GH-1/2008 STRAIN ON NUTRIENT MEDIA WITH DIFFERENT CARBON SOURCES
- Authors: Bolgova A.L.1, Shevtsov A.A.2,3, Arkharova N.A.4, Karimov D.N.5, Makarov I.S.6, Gromovykh T.I.1,4, Klechkovskaya V.V.4
-
Affiliations:
- Moscow Polytechnic University, Moscow, 107023, Russia
- Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology,” Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Artificial Intelligence AIRI, Moscow, 121170 Russia
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991 Russia
- Issue: Vol 68, No 4 (2023)
- Pages: 607-614
- Section: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://journals.rcsi.science/0023-4761/article/view/137444
- DOI: https://doi.org/10.31857/S002347612370025X
- EDN: https://elibrary.ru/IENXQA
- ID: 137444
Cite item
Abstract
The study presents a comparative analysis of the structures of dried films of bacterial cellulose (BC) produced by bacteria of the Gluconacetobacter hansenii GH-1/2008 strain under static conditions of cultivation on nutrient media with different carbon sources, such as glucose, sucrose, maltose, fructose, and lactose. It was found that the supramolecular structure of the films is a three-dimensional network composed of orientationally ordered microfibrils with an average diameter from 30 to 60 nm, which consist of crystalline and amorphous regions. An analysis of the powder X-ray diffraction patterns demonstrated that the crystalline regions of microfibrils are formed by cellulose I. Depending on the composition of the nutrient medium, the degree of crystallinity of the films varies in the range from ~20 to 90%. It was found that, regardless of the carbon source, the top and bottom surfaces of BC films have different microstructures defined by static conditions of cultivation. Thus, the top surface of gel films contains pores with a diameter of up to 500 nm, whereas a wider pore size distribution (up to 600 nm) is observed on the bottom surface. The difference between the average pore sizes on the top and bottom surfaces varies from 95 to 180 nm and from 100 to 200 nm, respectively. The measurements of the mechanical properties of the films showed that the films produced by the cultivation on media containing fructose and sucrose have the maximum strength, whereas the films produced using lactose and maltose have the minimum strength. The data on the BC productivity of the GH-1/2008 strain were obtained.
About the authors
A. L. Bolgova
Moscow Polytechnic University, Moscow, 107023, Russia
Email: ashi-chi@yandex.ru
Россия, Москва
A. A. Shevtsov
Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology,” Russian Academy of Sciences, Moscow, 119071 Russia; Institute of Artificial Intelligence AIRI, Moscow, 121170 Russia
Email: natalya.arkharova@yandex.ru
Россия, Москва; Россия, Москва
N. A. Arkharova
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
Email: natalya.arkharova@yandex.ru
Россия, Москва
D. N. Karimov
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia
Email: dnkarimov@gmail.com
Россия, Москва
I. S. Makarov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991 Russia
Email: natalya.arkharova@yandex.ru
Россия, Москва
T. I. Gromovykh
Moscow Polytechnic University, Moscow, 107023, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
Email: natalya.arkharova@yandex.ru
Россия, Москва; Россия, Москва
V. V. Klechkovskaya
Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia
Author for correspondence.
Email: klechvv@crys.ras.ru
Россия, Москва
References
- Basu A., Vadanan S.V., Lim S. // Sci Rep. 2018. P. 447. https://doi.org/10.1038/s41598-018-23701-y
- Ross P., Mayer R., Benziman M. // Microbiol. Rev. 1991. V. 55. № 1. P. 35. https://doi.org/10.1128/mr.55.1.35-58.1991
- Hassan E.A., Abdelhady H.M., El-Salam S.S. A. et al. // Microbiol. Res. J. 2015. V. 9. P. 1. https://doi.org/10.9734/BMRJ/2015/18223
- Hong F., Qiu K. // Carbohydr. Polym. 2008. P. 545. https://doi.org/10.1016/j.carbpol.2007.09.015
- Huang Y., Zhu C., Yang J. et al. // Cellulose. 2014. V. 21. P. 1. https://doi.org/10.1007/s10570-013-0088-z
- Frone A.N., Panaitescu D.M., Nicolae C.A. et al. // Polymers. 2020. V. 14. 5358. https://doi.org/10.3390/polym14245358
- Arkharova N., Suvorova E., Severin A. et al. // Scanning. 2016. V. 38. P. 757. https://doi.org/10.1002/sca.21325
- Svensson A., Nicklasson E., Harrah T. et al. // Biomaterials. 2005. P. 419. https://doi.org/10.1016/j.biomaterials.2004.02.049
- Буянов А.Л., Гофман И.В., Хрипунов А.К. и др. // Высокомолекулярные соединения. А. 2013. Т. 55. С. 512. https://doi.org/10.7868/S0507547513050036
- Millon L., Wan W. // Biomed. Mater. Res. B. Appl. Biomater. 2006. V. 79 (2). P. 245. https://doi.org/10.1002/jbm.b.30535
- Klemm D., Schumann D., Udhardt U. et al. // Prog. Polym. Sci. 2001. V. 26. P. 1561. https://doi.org/10.1016/S0079-6700(01)00021-1
- Wan Y., Gao C., Han M. et al. // Polym. Adv. Technol. 2011. V. 22. P. 2643. https://doi.org/10.3390/app9010107
- Wang J., Gao C., Zhang Y. et al. // Mater. Sci. Eng. C. 2010. P. 214. https://doi.org/10.1016/j.msec.2009.10.006
- Yoshino A., Tabuchi M., Uo M. // Acta Biomater. 2013. V. 9. P. 6116. https://doi.org/10.1016/j.actbio.2012.12.022
- Coffindaffer T.W., Heath B.P., Kyte K.E. et al. U.S. Patent 8.097.574. 2012.
- Hasan N., Biak D.R.A., Kamarudin S. // Int. J. Adv. Sci. Eng. Inform. Technol. 2012. V. 2. P. 272. https://doi.org/10.18517/ijaseit.2.4.201
- Amnuaikit T., Chusuit T., Raknam P. et al. // Med. Dev. 2011. V. 4. P. 77. https://doi.org/10.2147/MDER.S20935
- Czaja W., Romanovicz D., Brown Rm. // Cellulose. 2004. V. 11. P. 403. https://doi.org/10. 1023/b:cell.0000046412.11983.61
- Watanabe K., Tabuchi M., Morinaga Y. et al. // Cellulose. 1998. V. 5. P. 187. https://doi.org/10.1023/a:1009272904582
- Wang J., Tavakoli J., Tang Y. // Carbohydrate Polymers. 2019. V. 219. P. 63. https://doi.org/10.1016/j.carbpol.2019.05.008
- Bakhman M., Petrukhin I.Yu., Butenko I.Ye. et al. // EHO. 2018. № 6–2 (40). P. 61.
- Singhsa P., Narain R., Manuspiya H. // Cellulose. 2018. V. 25. P. 1571. https://doi.org/10.1007/s10570-018-1699-1
- Costa A., Almeida F., Vinhas G. et al. // Front. Microbiol. 2017. V. 8. P. 528. https://doi.org/10.3389/fmicb.2017.02027
- Mikkelsen D., Flanagan B.M., Dykes G.A. et al. // Microbiol. 2009. V. 107. P. 576. https://doi.org/10.1111/j.1365-2672.2009.04226.x
- Keshk S.M.A.S., Sameshima K. // Afr. J. Biotechnol. 2005. V. 4. № 6. P. 478. https://doi.org/10.5897/AJB2005.000-3087
- Wang S.S., Han Y.-H., Chen J.-L. et al. // Polymers. 2018. V. 10. P. 963. https://doi.org/10.1016/10.3390/polym10090963
- Киселева О.И., Луценко С.В., Фельдман Н.Б. и др. // Вестн. Том. гос. ун-та. Биология. 2021. № 53. С. 22. https://doi.org/10.17223/19988591/53/2
- Gromovykh T.I., Pigaleva M.A., Gallyamov M.O. et al. // Carbohydr. Polym. 2020. V. 237. P. 116140 https://doi.org/10.1016/j.carbpol.2020.116140
- Skvortsova Z.N., Gromov T.I., Grachev V.S. et al. // Colloid J. 2019. V. 81. № 4. P. 441. https://doi.org/10.1134/S1061933X19040161
- Gromovykh T.I., Fan M.K., Danil’chuk T.N. Gluconacetobacter hansenii GH-1/2008 bacterial strain - bacterial cellulose producer // Patent RF. № 2464307. 2012.
- Hestrin S., Schramm M. // Biochem. J. 1954. V. 58. P. 345. https://doi.org/10.1042/bj0580345
- Bi J.C., Liu S.X., Li C.F. et al. // J. Appl. Microbiol. 2014. V. 117. P. 1305.
- Atalla R., Vanderhart D. // Science. 1984. V. 223. P. 283. https://doi.org/10.1126/science.223.4633.283
- French A.D. // Cellulose. 2014. V. 21. P. 885. https://doi.org/10.1007/s10570-013-0030-4
- Fink H.-P., Purz H., Bohn A., Kunze J. // Macromol. Symp. 1997. V. 120. P. 207. https://doi.org/10.1021/bm3005929
- Клечковская В.В., Баклагина Ю.Г., Степина Н.Д. и др. // Кристаллография. 2003. Т. 48. № 5. С. 813. https://doi.org/10.1134/1.1612596
- Horii F., Yamamoto H., Hirai A. // Macromol. Symp. 1997. V. 120. P. 197. https://doi.org/10.1002/masy.19971200120
- Алешина Л.А., Глазкова С.В., Луговская Л.А. и др. // Химия растительного сырья. 2001. № 1. С. 5.
Supplementary files
