MICROSTRUCTURE OF GEL FILMS OF BACTERIAL CELLULOSE SYNTHESIZED UNDER STATIC CONDITIONS OF CULTIVATION OF THE GLUCONACETOBACTER HANSENII GH-1/2008 STRAIN ON NUTRIENT MEDIA WITH DIFFERENT CARBON SOURCES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study presents a comparative analysis of the structures of dried films of bacterial cellulose (BC) produced by bacteria of the Gluconacetobacter hansenii GH-1/2008 strain under static conditions of cultivation on nutrient media with different carbon sources, such as glucose, sucrose, maltose, fructose, and lactose. It was found that the supramolecular structure of the films is a three-dimensional network composed of orientationally ordered microfibrils with an average diameter from 30 to 60 nm, which consist of crystalline and amorphous regions. An analysis of the powder X-ray diffraction patterns demonstrated that the crystalline regions of microfibrils are formed by cellulose I. Depending on the composition of the nutrient medium, the degree of crystallinity of the films varies in the range from ~20 to 90%. It was found that, regardless of the carbon source, the top and bottom surfaces of BC films have different microstructures defined by static conditions of cultivation. Thus, the top surface of gel films contains pores with a diameter of up to 500 nm, whereas a wider pore size distribution (up to 600 nm) is observed on the bottom surface. The difference between the average pore sizes on the top and bottom surfaces varies from 95 to 180 nm and from 100 to 200 nm, respectively. The measurements of the mechanical properties of the films showed that the films produced by the cultivation on media containing fructose and sucrose have the maximum strength, whereas the films produced using lactose and maltose have the minimum strength. The data on the BC productivity of the GH-1/2008 strain were obtained.

About the authors

A. L. Bolgova

Moscow Polytechnic University, Moscow, 107023, Russia

Email: ashi-chi@yandex.ru
Россия, Москва

A. A. Shevtsov

Skryabin Institute of Bioengineering, Federal Research Centre “Fundamentals of Biotechnology,” Russian Academy of Sciences, Moscow, 119071 Russia; Institute of Artificial Intelligence AIRI, Moscow, 121170 Russia

Email: natalya.arkharova@yandex.ru
Россия, Москва; Россия, Москва

N. A. Arkharova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: natalya.arkharova@yandex.ru
Россия, Москва

D. N. Karimov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: dnkarimov@gmail.com
Россия, Москва

I. S. Makarov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, 119991 Russia

Email: natalya.arkharova@yandex.ru
Россия, Москва

T. I. Gromovykh

Moscow Polytechnic University, Moscow, 107023, Russia; Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: natalya.arkharova@yandex.ru
Россия, Москва; Россия, Москва

V. V. Klechkovskaya

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Author for correspondence.
Email: klechvv@crys.ras.ru
Россия, Москва

References

  1. Basu A., Vadanan S.V., Lim S. // Sci Rep. 2018. P. 447. https://doi.org/10.1038/s41598-018-23701-y
  2. Ross P., Mayer R., Benziman M. // Microbiol. Rev. 1991. V. 55. № 1. P. 35. https://doi.org/10.1128/mr.55.1.35-58.1991
  3. Hassan E.A., Abdelhady H.M., El-Salam S.S. A. et al. // Microbiol. Res. J. 2015. V. 9. P. 1. https://doi.org/10.9734/BMRJ/2015/18223
  4. Hong F., Qiu K. // Carbohydr. Polym. 2008. P. 545. https://doi.org/10.1016/j.carbpol.2007.09.015
  5. Huang Y., Zhu C., Yang J. et al. // Cellulose. 2014. V. 21. P. 1. https://doi.org/10.1007/s10570-013-0088-z
  6. Frone A.N., Panaitescu D.M., Nicolae C.A. et al. // Polymers. 2020. V. 14. 5358. https://doi.org/10.3390/polym14245358
  7. Arkharova N., Suvorova E., Severin A. et al. // Scanning. 2016. V. 38. P. 757. https://doi.org/10.1002/sca.21325
  8. Svensson A., Nicklasson E., Harrah T. et al. // Biomaterials. 2005. P. 419. https://doi.org/10.1016/j.biomaterials.2004.02.049
  9. Буянов А.Л., Гофман И.В., Хрипунов А.К. и др. // Высокомолекулярные соединения. А. 2013. Т. 55. С. 512. https://doi.org/10.7868/S0507547513050036
  10. Millon L., Wan W. // Biomed. Mater. Res. B. Appl. Biomater. 2006. V. 79 (2). P. 245. https://doi.org/10.1002/jbm.b.30535
  11. Klemm D., Schumann D., Udhardt U. et al. // Prog. Polym. Sci. 2001. V. 26. P. 1561. https://doi.org/10.1016/S0079-6700(01)00021-1
  12. Wan Y., Gao C., Han M. et al. // Polym. Adv. Technol. 2011. V. 22. P. 2643. https://doi.org/10.3390/app9010107
  13. Wang J., Gao C., Zhang Y. et al. // Mater. Sci. Eng. C. 2010. P. 214. https://doi.org/10.1016/j.msec.2009.10.006
  14. Yoshino A., Tabuchi M., Uo M. // Acta Biomater. 2013. V. 9. P. 6116. https://doi.org/10.1016/j.actbio.2012.12.022
  15. Coffindaffer T.W., Heath B.P., Kyte K.E. et al. U.S. Patent 8.097.574. 2012.
  16. Hasan N., Biak D.R.A., Kamarudin S. // Int. J. Adv. Sci. Eng. Inform. Technol. 2012. V. 2. P. 272. https://doi.org/10.18517/ijaseit.2.4.201
  17. Amnuaikit T., Chusuit T., Raknam P. et al. // Med. Dev. 2011. V. 4. P. 77. https://doi.org/10.2147/MDER.S20935
  18. Czaja W., Romanovicz D., Brown Rm. // Cellulose. 2004. V. 11. P. 403. https://doi.org/10. 1023/b:cell.0000046412.11983.61
  19. Watanabe K., Tabuchi M., Morinaga Y. et al. // Cellulose. 1998. V. 5. P. 187. https://doi.org/10.1023/a:1009272904582
  20. Wang J., Tavakoli J., Tang Y. // Carbohydrate Polymers. 2019. V. 219. P. 63. https://doi.org/10.1016/j.carbpol.2019.05.008
  21. Bakhman M., Petrukhin I.Yu., Butenko I.Ye. et al. // EHO. 2018. № 6–2 (40). P. 61.
  22. Singhsa P., Narain R., Manuspiya H. // Cellulose. 2018. V. 25. P. 1571. https://doi.org/10.1007/s10570-018-1699-1
  23. Costa A., Almeida F., Vinhas G. et al. // Front. Microbiol. 2017. V. 8. P. 528. https://doi.org/10.3389/fmicb.2017.02027
  24. Mikkelsen D., Flanagan B.M., Dykes G.A. et al. // Microbiol. 2009. V. 107. P. 576. https://doi.org/10.1111/j.1365-2672.2009.04226.x
  25. Keshk S.M.A.S., Sameshima K. // Afr. J. Biotechnol. 2005. V. 4. № 6. P. 478. https://doi.org/10.5897/AJB2005.000-3087
  26. Wang S.S., Han Y.-H., Chen J.-L. et al. // Polymers. 2018. V. 10. P. 963. https://doi.org/10.1016/10.3390/polym10090963
  27. Киселева О.И., Луценко С.В., Фельдман Н.Б. и др. // Вестн. Том. гос. ун-та. Биология. 2021. № 53. С. 22. https://doi.org/10.17223/19988591/53/2
  28. Gromovykh T.I., Pigaleva M.A., Gallyamov M.O. et al. // Carbohydr. Polym. 2020. V. 237. P. 116140 https://doi.org/10.1016/j.carbpol.2020.116140
  29. Skvortsova Z.N., Gromov T.I., Grachev V.S. et al. // Colloid J. 2019. V. 81. № 4. P. 441. https://doi.org/10.1134/S1061933X19040161
  30. Gromovykh T.I., Fan M.K., Danil’chuk T.N. Gluconacetobacter hansenii GH-1/2008 bacterial strain - bacterial cellulose producer // Patent RF. № 2464307. 2012.
  31. Hestrin S., Schramm M. // Biochem. J. 1954. V. 58. P. 345. https://doi.org/10.1042/bj0580345
  32. Bi J.C., Liu S.X., Li C.F. et al. // J. Appl. Microbiol. 2014. V. 117. P. 1305.
  33. Atalla R., Vanderhart D. // Science. 1984. V. 223. P. 283. https://doi.org/10.1126/science.223.4633.283
  34. French A.D. // Cellulose. 2014. V. 21. P. 885. https://doi.org/10.1007/s10570-013-0030-4
  35. Fink H.-P., Purz H., Bohn A., Kunze J. // Macromol. Symp. 1997. V. 120. P. 207. https://doi.org/10.1021/bm3005929
  36. Клечковская В.В., Баклагина Ю.Г., Степина Н.Д. и др. // Кристаллография. 2003. Т. 48. № 5. С. 813. https://doi.org/10.1134/1.1612596
  37. Horii F., Yamamoto H., Hirai A. // Macromol. Symp. 1997. V. 120. P. 197. https://doi.org/10.1002/masy.19971200120
  38. Алешина Л.А., Глазкова С.В., Луговская Л.А. и др. // Химия растительного сырья. 2001. № 1. С. 5.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (5MB)
4.

Download (231KB)

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».