Study of the Effect of Inverse Magnetostriction in Ferromagnet/Ferroelectric Heterostructures Using Ab Initio Calculations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Fe/BaTiO3, Fe/SrTiO3, Co/BaTiO3, and Co/SrTiO3 heterostructures, which exhibit magnetoelectric effect, have been investigated. It is shown that the magnetic properties of thin ferromagnetic films can be controlled using an external electric field. The structural, electronic, and magnetic properties of the heterostructures have been investigated applying ab initio calculation methods. It is shown that, using the inverse piezoelectric effect, one can reduce the absolute value of the ferromagnet magnetization vector. This approach may be a basis for controlling the properties of one of the ferromagnetic layers of a superconducting spin valve and, as a consequence, the superconducting properties of the valve.

作者简介

I. Gumarova

Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences, 420029, Kazan, Russia; Kazan Federal University, Institute of Physics, 420008, Kazan, Russia

Email: iipiyanzina@kpfu.ru
Россия, Казань; Россия, Казань

K. Evseev

Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences, 420029, Kazan, Russia

Email: iipiyanzina@kpfu.ru
Россия, Казань

A. Kamashev

Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences, 420029, Kazan, Russia

Email: iipiyanzina@kpfu.ru
Россия, Казань

R. Mamin

Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences, 420029, Kazan, Russia

编辑信件的主要联系方式.
Email: iipiyanzina@kpfu.ru
Россия, Казань

参考

  1. Ota S., Ando A., Chiba D. // Nat. Electron. 2018. V. 1. P. 124. https://doi.org/10.1038/s41928-018-0022-3
  2. Makarov D., Melzer M., Karnaushenko D., Shmidt O.G. // Appl. Phys. Rev. 2016. V. 3. P. 011101. https://doi.org/10.1063/1.4938497
  3. Jia C., Zhao X., Lai Y.H. et al. // Nano Energy. 2019. V. 60. P. 476. https://doi.org/10.1016/j.nanoen.2019.03.053
  4. Liy Y., Yang T., Zhang Y. et al. // Adv. Mater. 2019. V. 31. P. 1902783. https://doi.org/10.1038/s41928-018-0022-3
  5. Won S.S., Seo H., Kawahara M. et al. // Nano Energy. 2019. V. 55. P. 182. https://doi.org/10.1016/j.nanoen.2018.10.068
  6. Yao J., Song X., Gao X. et al. // ACS Nano. 2018. V. 12. P. 6767. https://doi.org/10.1021/acsnano.8b01936
  7. Lu N., Zhang P., Zhang Q. et al. // Nature. 2017. V. 546. P. 124. https://doi.org/10.1038/nature22389
  8. Cao D., Wang F., Jiang Z. et al. // J. Mater. Sci. 2016. V. 51. P. 3297. https://doi.org/10.1007/s10853-015-9656-y
  9. Leksin P.V., Garif’yanov N.N., Garifullin I.A. et al. // Appl. Phys. Lett. 2010. V. 97. P. 102505. https://doi.org/10.48550/arXiv.1007.2511
  10. Тихомирова Н.А., Баранов А.И., Гинзберг А.В. и др. // Письма в ЖЭТФ. 1983. Т. 38. С. 365. https://doi.org/10.48550/arXiv.1007.2511
  11. Тихомирова Н.А., Донцова Л.И., Гигзберг А.В. и др. // ФТТ. 1988. Т. 30. С. 724. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ftt&paperid=4418&option_lang=rus
  12. Zhao Y., Peng R., Guo Y. et al. // Adv. Functional Mater. 2021. V. 31. P. 2009376. https://doi.org/10.1002/adfm.202009376
  13. Tsymbal E.Y., Duan C.G., Jaswal S.S. // Phys. Rev. Lett. 2006. V. 31. P. 047201. https://doi.org/10.1103/PhysRevLett.97.047201
  14. Duan C.G., Jaswal S.S., Tsymbal E.Y. // Phys. Rev. 2006. V. 97. P. 047201. https://doi.org/10.1103/PhysRevLett.97.047201
  15. Sahoo S., Srinivas P., Duan C.G. et al. // Phys. Rev. 2007. V. 76. P. 092108. https://doi.org/10.1103/PhysRevB.76.092108
  16. Muller K.A., Burkard H. // Phys. Rev. 1979. V. 19. P. 3593. https://doi.org/10.1103/PhysRevB.19.3593
  17. Hohenberg P., Kohn W. // Phys. Rev. B. 1964. V. 136. P. 864. https://doi.org/10.1103/PhysRev.136.B864
  18. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  19. Kohn W., Sham L.J. // Phys. Rev. A. 1965. V. 140. P. 1133. https://doi.org/10.1103/PhysRev.140.A1133
  20. Blöchl P.E. // Phys. Rev. 1994. V. 50. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
  21. Kresse G., Furthmüller J. // Comp. Mater. Sci. 1996. V. 6. P. 15. https://doi.org/10.1016/0927-0256(96)00008-0
  22. Kresse G., Furthmüller J. // Phys. Rev. 1996. V. 54. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  23. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  24. MedeA, version 3.6; Inc. San Diego, USA.
  25. Monkhorst H.J., Pack J.D. // Phys. Rev. 1976. V. 13. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  26. Blöchl P.E., Jepsen O., Andersen O.K. // Phys. Rev. 1994. V. 49. P. 16223. https://doi.org/10.1103/PhysRevB.49.16223
  27. Methfessel M., Paxton A.T. // Phys. Rev. 1989. V. 40. P. 3616. https://doi.org/10.1103/PhysRevB.40.3616
  28. Dudarev S.L., Botton G.A., Savrasov S.Y. et al. // Phys. Rev. 1998. V. 57. P. 1505. https://doi.org/10.1103/PhysRevB.57.1505
  29. Calderon C.E., Plata J.J., Toher C. // Comp. Mater. Sci. 2015. V. 108. P. 233. https://doi.org/10.1016/j.commatsci.2015.07.019
  30. Oleinik I.I., Tsymbal E.Y., Pettifor D.G. // Phys. Rev. 2001. V. 65. P. 020401. https://doi.org/10.1103/PhysRevLett.98.115503

补充文件

附件文件
动作
1. JATS XML
2.

下载 (349KB)
3.

下载 (157KB)
4.

下载 (172KB)
5.

下载 (119KB)
6.

下载 (397KB)
7.

下载 (313KB)

版权所有 © И.И. Гумарова, К.В. Евсеев, А.А. Камашев, Р.Ф. Мамин, 2023

##common.cookie##