COHERENCE ASSEMBLY IN STRUCTURES WITH HEAVY METAL CLUSTERS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A crystallographic analysis of two structures, monoclinic Nа8[{Re4(PO)4}(CN)12]⋅18H2O⋅CH3OH (I) and orthorhombic [(C6H5)4P]4 [Ta6I12(CN6)] (II), in which clusters of heavy atoms are significantly rarefied in space, so that their mutual arrangement cannot be explained only in terms of chemical interaction, has been performed. In structure I the crystallographic planes with a high atomic density (“skeletal” planes) are located in the regions with dhkl = 10–5.5 Å and dhkl < 3 Å. The planes in which atomic groups [Re4(PO)4] (playing the role of unified bulk objects) are concentrated are in fact selected in the first region. In the second region, ordering is implemented at the level of individual atoms. A crystallographic analysis showed that the structure basis is determined by the sites of heavy Re cations. A striking fact is that there are 1152 subcells and only 32 Re atoms per unit cell in this structure; i.e., only the fraction of 1/144 provides the basis of structure stability. In structure II “skeletal” planes are also absent in the range of dhkl from ∼7 to ∼4 Å. The planes in the range of large dhkl characterize cluster ordering, whereas the planes in the range of small dhkl characterize ordering of separate atoms. The geometry and local symmetry of the cluster group (Та6 octahedron) dictates the basis of translational symmetry—unified sublattice of sites, most of which are free of these atoms. The considered structures demonstrate the key role of heavy atoms in the formation of translational symmetry—the fundamental difference of the crystalline state from other condensed states. The newly formed structure retains partially local symmetry of cores (templates) of atomic groups, bound by strong chemical interactions, including the interactions between heavy and light atoms. The process of formation of a crystal structure from randomly oriented and randomly located templates—coherence assembly—is implemented according to the laws of dynamics of elastic media, where masses of atoms rather than their chemical characteristics are important.

Sobre autores

N. Pervukhina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Email: pervukh@niic.nsc.ru
Россия, Новосибирск

S. Borisov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Email: pervukh@niic.nsc.ru
Россия, Новосибирск

S. Magarill

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Autor responsável pela correspondência
Email: pervukh@niic.nsc.ru
Россия, Новосибирск

Bibliografia

  1. O'Keeffe M., Hyde B.G. // Phylosoph. Trans. Royal Soc. L., Mathemat. Phys. Sci. 1980. V. 295. P. 553.
  2. Delgado-Friedrichs O., O’Keeffe M. // Acta Cryst. A. 2003.V. 59. P. 351.
  3. Eon J.-G. // Acta Cryst. A. 2011. V. 67. P. 68.
  4. Yaghi O.M., O’Keeffe M., Ockwig N.W. et al. // Nature. 2003. V. 423. P. 705.
  5. Ockwig N.W., Delgado-Friedrichs O., O’Keeffe M. // Accts. Chem. Res. 2005. V. 38. P. 176.
  6. Yaghi O.M., O’Keeffe M., Kanatzidis M. // J. Solid State Chem. 2000. V. 152. P. 1.
  7. O'Keeffe M., Hyde B.G. // Phylosoph. Trans. Royal Soc. L. Mathemat. Phys. Sci. 1980. V. 295. P. 553.
  8. Delgado-Friedrichs O., Foster M.D., O’Keeffe M. et al. // Solid State Chem. 2005. V. 178. P. 2533.
  9. Пирсон У. Кристаллохимия и физика металлов и сплавов. М.: Мир, 1977. 472 с.
  10. Крипякевич П.И. Структурные типы интерметаллических соединений. М.: Наука, 1977. 288 с.
  11. Смирнова Н.Л. О некоторых фундаментальных элементах в частях кристаллического пространства. Кристаллохимия минералов. Л.: Наука, 1981. 109 с.
  12. Близнюк Н.А., Борисов С.В. // Журн. структур. xимии. 1992. Т. 33. С. 145.
  13. Ferraris G., Makovicky E., Merlino S. Crystallography of Modular Materials. Oxford University Press, 2004. 400 p.
  14. Moëlo Y., Makovicky E., Mozgova N.N. et al. // Eur. J. Mineral. 2008. V. 20. P. 7.
  15. Borisov S.V., Magarill S.A., Pervukhina N.V. // Russ. Chem. Rev. 2015. V. 84. № 4. P. 393.
  16. Борисов С.В. // Журн. структур. химии. 1992. Т. 33. № 6. С. 123.
  17. Борисов С.В., Магарилл С.А., Первухинa Н.В. Алгоритмы и практика кристаллографического анализа атомных структур. Новосибирск: Изд-во СО РАН, 2012. 111 с.
  18. Evans N.T. // Perspectives Struct. Chem. 1971. V. 4. P. 1.
  19. Борисов С.В., Клевцова Р.Ф., Магарилл С.А. и др. // Журн. структур. химии. 2002. Т. 43. № 4. С. 664.
  20. Борисов С.В., Магарилл С.А., Первухина Н.В. // Журнал структур. химии. 2014. Т. 55. № 3. С. 500.
  21. Nyman M. // Dalton Trans. 2011. V. 40. P. 8049.
  22. Борисов С.В., Магарилл С.А., Первухина Н.В. // Кристаллография. 2011. Т. 56. № 6. С. 1001.
  23. Пронин А.С., Брылев K.A., Штребеле M. и др. // Журн. структур. химии. 2021. Т. 62. № 7. С. 1157.
  24. Brandenburg K. DIAMOND. 2012. Crystal Impact GbR, Bonn, Germany.
  25. Борисов С.В., Магарилл С.А., Первухина Н.В. // Журн. структур. химии. 2019. Т. 60. № 8. С. 1243.
  26. Громилов С.А., Быкова E.A., Борисов С.В. // Кристаллография. 2011. Т. 56. № 6. С. 1013.
  27. Shamshurin M.V., Mikhaylov M.A., Sukhikh T. et al. // Inorg. Chem. 2019. V. 58. P. 9028.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (707KB)
3.

Baixar (612KB)
4.

Baixar (710KB)
5.

Baixar (719KB)

Declaração de direitos autorais © С.В. Борисов, С.А. Магарилл, Н.В. Первухина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies