Spatial Spin-Modulated Structure of Bi1 – xSrxFeO3 – y (x = 0, 0.05, and 0.10) Multiferroics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The room-temperature X-ray and Mössbauer data on the BiFeO3, Bi0.95Sr0.05FeO3 – y, and Bi0.90Sr0.10FeO3 – y multiferroics obtained by solid-phase synthesis are presented. The samples have a rhombohedral crystal structure with the sp. gr. R3c. The lattice parameter ah is invariable, while the parameter ch decreases with increasing strontium content. The 57Fe Mössbauer spectra recorded at a temperature of 295 K have been interpreted within the cycloid spatial spin-modulated structure model. It has been established that the easy-axis magnetic anisotropy is implemented in the investigated multiferroics. The anharmonicity parameter m of the spin-modulated structure has been measured. Upon replacement of trivalent Bi3+ ions in small amounts (x = 0–0.10) with divalent Sr2+ ions, the parameter m increases by a factor of more than 3: from 0.10(4) at x = 0.00 to 0.36(10) at x = 0.10.

Sobre autores

V. Pokatilov

MIREA Russian Technological University, 119454, Moscow, Russia; Vereshchagin Institute for High-Pressure Physics, Russian Academy of Sciences, 142190, Troitsk, Moscow, Russia

Email: al-gap@physics.msu.ru
Россия, Москва; Россия, Троицк

V. Rusakov

Moscow State University, 119991, Moscow, Russia

Email: al-gap@physics.msu.ru
Россия, Москва

A. Gapochka

Moscow State University, 119991, Moscow, Russia

Email: al-gap@physics.msu.ru
Россия, Москва

A. Sigov

MIREA Russian Technological University, 119454, Moscow, Russia

Autor responsável pela correspondência
Email: al-gap@physics.msu.ru
Россия, Москва

Bibliografia

  1. Eerenstein W., Mathur N., Scott J. // Nature. 2006. V. 442. P. 759. https://doi.org/10.1038/nature05023
  2. Звездин А.К., Пятаков А.П. // Успехи физ. наук. 2009. Т. 179. С. 897. https://doi.org/10.3367/UFNr.0179.200908i.0897
  3. Sosnowska I., Peterlin T.P., Neumaier T. et al. // J. Phys. C. 1982. V. 15. P. 4835. https://doi.org/10.1088/0022-3719/15/23/020
  4. Tu C.-S., Xu Z.-R., Schmidt V.H. et al. // Ceram. Int. 2015. V. 41. P. 8417. https://doi.org/10.1016/j.ceramint.2015.03.043
  5. Hussain S., Hasanain S.K., Hassnain Jaffari G. et al. // J. Alloys Compd. 2015. V. 622. P. 8. https://doi.org/10.1016/j.jallcom.2014.10.029
  6. Sosnowska I., Zvezdin A.K. // J. Magn. Magn. Mater. 1995. V. 140–144. Pt 1. P. 167. https://doi.org/10.1016/0304-8853(94)01120-6
  7. Zalessky A.V., Frolov A.A., Khimich T.A. et al. // Europhys. Lett. 2000. V. 50. P. 547. https://doi.org/10.1209/epl/i2000-00304-5
  8. Залесский А.В., Фролов А.А., Звездин Е.К. и др. // ЖЭТФ. 2002. Т. 122. С.166. https://doi.org/10.1134/1.1499907
  9. Landers J., Salamon S., Escobar M. et al. // Nanoparticles. Nano Lett. 2014. V. 14. 14 (11). P. 6061. https://doi.org/10.1021/nl5031375
  10. Русаков В.С., Покатилов В.С., Сигов А.С. и др. // Письма в ЖЭТФ. 2014. Т. 100. С. 518. https://doi.org/10.7868/S0370274X14190096
  11. Rusakov V., Pokatilov V., Sigov A. et al. // EPJ Web Conf. 2018. V. 185. P. 7010. https://doi.org/10.1051/epjconf/201818507010
  12. Rusakov V.S., Pokatilov V.S., Sigov A.S. et al. // Ferroelectrics. 2020. V. 569. P. 286. https://doi.org/10.1080/00150193.2020.1822682
  13. Sobolev A.V., Rusakov V.S., Gapochka A.M. et al. // Phys. Rev. B. 2020. V. 101. P. 224409. https://doi.org/10.1103/PhysRevB.101.224409
  14. Li J., Duan Y., He H., Song D. // J. Alloys Compd. 2001. V. 315. P. 259. https://doi.org/10.1016/S0925-8388(00)01313-X
  15. Folcke E., Le Breton J.M., Bréard Y., Maignan A. // Solid State Sci. 2010. V. 12. P. 1387. https://doi.org/10.1016/j.solidstatesciences.2010.05.015
  16. Покатилов B.C., Коновалова А.О., Сигов А.С. // Изв. РАН. Сер. физ. 2013. Т. 77. № 6. С. 772. https://doi.org/10.7868/S0367676513060239
  17. Cherepanov V.M., Pokatilov V.S. // Solid State Phenomena. 2009. V. 152–153. P. 89. https://doi.org/10.4028/www.scientific.net/SSP.152-153.89
  18. Gervits N.E., Tkachev A.V., Zhurenko S.V. et al. // Solid State Commun. 2022. V. 344. P. 114682. https://doi.org/10.1016/j.ssc.2022.114682
  19. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489. P. 178. https://doi.org/10.1063/1.4759488
  20. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751. https://www.geo.arizona.edu/xtal/geos596a/ACB25_925.pdf
  21. Русаков В.С., Покатилов В.С., Сигов А.С. и др. // ФТТ. 2016. Т. 58. С. 102. http://journals.ioffe.ru/ftt/2016/01/p102-107.pdf
  22. Покатилов В.С., Русаков В.С., Сигов и А.С. др. // ФТТ. 2017. Т. 59. С. 433.
  23. Покатилов В.С., Русаков В.С., Сигов А.С. и др. // ФТТ. 2017. Т. 59. С. 1535. https://journals.ioffe.ru/articles/viewPDF/44754
  24. Русаков В.С., Покатилов В.С., Сигов А.С. и др. // ФТТ. 2019. Т. 61. Вып. 6. С. 1107.
  25. Tehranchi M.M., Kubrakov N.F., Zvezdin A.K. // Ferroelectrics. 1997. V. 204. P. 1181. https://doi.org/10.1080/00150199708222198
  26. Palewicz A., Szumiata T., Przeniosło R. et al. // Solid State Commun. 2006. V. 140. P. 359. https://doi.org/10.1016/j.ssc.2006.08.046
  27. Park J.-G., Le M.D., Jeong J., Lee S. // J. Phys.: Condens. Matter. 2014. V. 26. P. 433202. https://doi.org/10.1088/0953-8984/26/43/433202

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (79KB)
3.

Baixar (47KB)
4.

Baixar (305KB)
5.

Baixar (508KB)
6.

Baixar (39KB)
7.

Baixar (54KB)

Declaração de direitos autorais © В.С. Покатилов, В.С. Русаков, А.М. Гапочка, А.С. Сигов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies