THE INFLUENCE OF ELECTRON IRRADIATION ON THE STABILITY OF α-Fe2O3 NANOPARTICLES TO NATURAL AGING PROCESSES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The influence of the modification of α-Fe2O3 nanoparticles by electron irradiation on their stability to natural aging processes during a long-term (three years) storage has been studied. Nanoparticles of this type (obtained by chemical vapor deposition with subsequent thermal annealing) were chosen due to the wide range of their practical applications. The changes in the properties of α-Fe2O3 nanoparticles during natural aging, depending on the irradiation dose, were investigated by X-ray diffraction and Mössbauer spectroscopy. It is found that modification by electron irradiation provides stability of α-Fe2O3 nanoparticles to hydration processes and phase transformations during a long-term storage; an increase in the irradiation dose increases the resistance to structural disordering during aging, thus retaining the nanoparticle properties for a long time.

Негізгі сөздер

Авторлар туралы

A. Kozlovskiy

Gumilev Eurasian National University, Astana, 473021 Kazakhstan

Email: kozlovskiy.a@inp.kz
Казахстан, Астана

V. Rusakov

Moscow State University

Email: rusakov@phys.msu.ru
Moscow, 119991 Russia

M. Fadeev

Lomonosov Moscow State University, Moscow, Russia

Хат алмасуға жауапты Автор.
Email: kozlovskiy.a@inp.kz
Россия, Москва

Әдебиет тізімі

  1. Jang S., Hira S.A., Annas D. et al. // Processes. 2019. V. 7. № 7. P. 422. https://doi.org/10.3390/pr7070422
  2. Sharif H.M.A., Mahmood A., Cheng H.Y. et al. // ACS Appl. Nano Mater. 2019. V. 2. № 8. P. 5310. https://doi.org/10.1021/acsanm.9b01250
  3. Nasrollahzadeh M., Sajjadi M., Khonakdar H.A. // J. Mol. Struct. 2018. V. 1161. P. 453. https://doi.org/10.1016/j.molstruc.2018.02.026
  4. Yew Y.P., Shameli K., Miyake M. et al. // Arabian J. Chem. 2020. V. 13. № 1. P. 2287. https://doi.org/10.1016/j.arabjc.2018.04.013
  5. Yan S., Zhang X., Sun Y. et al. // Colloids Surf. B. 2014. V. 113. P. 302. https://doi.org/10.1016/j.colsurfb.2013.09.004
  6. Deotale A.J., Nandedkar R.V. // Materials Today: Proceedings. 2016. V. 3. № 6. P. 2069. https://doi.org/10.1016/j.matpr.2016.04.110
  7. Rajan A., Sharma M., Sahu N.K. // Sci. Rep. 2020. V. 10. № 1. P. 1. https://doi.org/10.1038/s41598-020-71703-6
  8. Jiang Q.L., Zheng S.W., Hong R.Y. et al. // Appl. Surf. Sci. 2014. V. 307. P. 224. https://doi.org/10.1016/j.apsusc.2014.04.018
  9. Patil R.M., Thorat N.D., Shete P.B. et al. // Mater. Sci. Eng. C. 2016. V. 59. P. 702. https://doi.org/10.1016/j.msec.2015.10.064
  10. Liu S., Yu B., Wang S. et al. // Adv. Colloid Interface Sci. 2020. V. 281. P. 102165. https://doi.org/10.1016/j.cis.2020.102165
  11. Lu W., Shen Y., Xie A., Zhang W. // J. Magn. Magn. Mater. 2010. V. 322. № 13. P. 1828. https://doi.org/10.1016/j.jmmm.2009.12.035
  12. Ganapathe L.S., Mohamed M.A., Mohamad Yunus R., Berhanuddin D.D. // Magnetochemistry. 2020. V. 6. № 4. P. 68. https://doi.org/10.3390/magnetochemistry6040068
  13. Castellanos-Rubio I., Arriortua O., Iglesias-Rojas D. et al. // Chem. Mater. 2021. V. 33. № 22. P. 8693. https://doi.org/10.1021/acs.chemmater.1c02654
  14. Kumar S., Kumar M., Singh A. // Contemp. Phys. 2021. V. 62. № 3. P. 144. https://doi.org/10.1080/00107514.2022.2080910
  15. Kozlovskiy A.L., Ermekova A.E., Korolkov I.V. et al. // Vacuum. 2019. V. 163. P. 236. https://doi.org/10.1016/j.vacuum.2019.02.029
  16. Jafari A., Shayesteh S.F., Salouti M., Boustani K. // J. Magn. Magn. Mater. 2015. V. 379. P. 305. https://doi.org/10.1016/j.jmmm.2014.12.050
  17. Liu S., Yu B., Wang S. et al. //Adv. Colloid Interface Sci. 2020. V. 281. P. 102165. https://doi.org/10.1016/j.cis.2020.102165
  18. Calatayud M.P., Sanz B., Raffa V. et al. // Biomaterials. 2014. V. 35. № 24. P. 6389. https://doi.org/10.1016/j.biomaterials.2014.04.009
  19. Zdorovets M.V., Kozlovskiy A.L., Fadeev M.S. et al. // Cer. Int. 2020. V. 46. № 9. P. 13580. https://doi.org/10.1016/j.ceramint.2020.02.143
  20. Zhao B., Wang Y., Guo H. et al. // Mater. Sci. Poland. 2007. V. 25. № 4. P. 1143.
  21. Ganapathe L.S., Mohamed M.A., Mohamad Yunus R. et al. // Magnetochemistry. 2020. V. 6. № 4. P. 68. https://doi.org/10.3390/magnetochemistry6040068
  22. Koo K.N., Ismail A.F., Othman M.H.D. et al. // Malaysian J. Fundam. Appl. Sci. 2019. V. 15. № 1. P. 23.
  23. Salihov S.V., Ivanenkov Y.A., Krechetov S.P. et al. // J. Magn. Magn. Mater. 2015. V. 394. P. 173. https://doi.org/10.1016/j.jmmm.2015.06.012
  24. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489. P. 178. https://doi.org/10.1063/1.4759488
  25. Fadeev M.S., Kozlovskiy A.L., Korolkov I.V. et al. // Colloids Surf. A. 2020. V. 603. P. 125178. https://doi.org/10.1016/j.colsurfa.2020.125178
  26. Rusakov V.S., Kozlovskiy A.L., Fadeev M.S. et al. // Nanomaterials. 2022. V. 12 (23). P. 4121. https://doi.org/10.3390/nano12234121
  27. Verwey E.J.W. // Nature. 1939. V. 144. P. 327. https://doi.org/10.1038/144327b0
  28. Yang J.B., Zhou X.D., Yelon W.B. et al. // J. Appl. Phys. 2004. V. 95. P. 7540. https://doi.org/10.1063/1.1669344
  29. Jones D.H., Srivastava K.K.P. // Phys. Rev. B.1986. V. 34. № 11. P. 7542. https://doi.org/10.1103/PhysRevB.34.7542

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (597KB)
3.

Жүктеу (97KB)
4.

Жүктеу (118KB)
5.

Жүктеу (1MB)

© А.Л. Козловский, В.С. Русаков, М.С. Фадеев, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>