ROCKING CURVE OF A DOUBLE-CRYSTAL SPECTROMETER IN THE BRAGG-BRAGG GEOMETRY INCLUDING THE ABSORPTION COEFFICIENT DEPENDENCY FROM THE NEUTRON WAVELENGTH

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An analytical expression is obtained for the rocking curve of a double-crystal spectrometer, which does not require restrictions on the absorption cross section dependency on the wavelength. A modeled rocking curve (instrumental line) for the Bragg–Bragg spectrometric scheme is calculated using the example of an InSb crystal in the region of weak dependency between the absorption cross section and the wavelength and in the region of wavelengths close to the absorption resonance.

Sobre autores

J. Schmeissner

National research center “Kurchatov Institute,” Moscow, Russia; National research nuclear university “MEPhI,” Moscow, Russia

Email: yokhan.schmeissner@itep.ru
Россия, Москва; Россия, Москва

A. Tyulyusov

National research center “Kurchatov Institute,” Moscow, Russia; National research nuclear university “MEPhI,” Moscow, Russia

Autor responsável pela correspondência
Email: yokhan.schmeissner@itep.ru
Россия, Москва; Россия, Москва

Bibliografia

  1. Compton A., Allison S. X-rays in theory and experiment. New York: D. Van Nostrand Company. Inc. 1935. https://doi.org/10.1148/25.5.640
  2. Пинскер З.Г. Рентгеновская кристаллооптика. М.: Наука,1982.
  3. Authier A. Dynamical theory of X-ray diffraction. IUCr. Oxford Science. Oxford. U.K. 2001. https://doi.org/10.1107/97809553602060000569
  4. Абов Ю.Г., Елютин Н.О., Тюлюсов А.Н. // Ядерная физика. 2002. Вып. 65. С. 1989. https://doi.org/10.1134/1.1522085
  5. Willis B.T.M. // Acta Cryst. B. 1960. V. 13. P. 763. https://doi.org/10.1107/S0365110X60001849
  6. Szabo C.I., Cline J.P., Henins A. et al. // J. Res. Natl. Inst. Stand. Technol. 2021. V. 126. P. 126049. https://doi.org/10.6028/jres.126.049
  7. Dolzhenkova E., Babenko G., Voronov A. et al. // Acta Phys. Pol. A. 2022. V. 141. https://doi.org/10.12693/aphyspola.141.41
  8. Bragg W.H., Bragg W.L. // P. R. Soc. Lond. A. 1913. V. 88. P. 428. https://doi.org/10.1098/rspa.1913.0040
  9. Borrmann G. // Physik Z. 1941. B. 42. S. 157.
  10. Knowles J.W. // Acta Cryst. 1956. V. 9. P. 61. https://doi.org/10.1107/S0365110X56000115
  11. Шильштейн С.Ш., Соменков В.А. // Кристаллография. 1975. Т. 20. Вып. 5. С. 1096.
  12. Zippel D., Kleinstuck K., Schulze G.E.R. // Phys. Lett. 1964. V. 8. P. 241.
  13. Каган Ю.М., Афанасьев А.М. // ЖЭТФ. 1966. Т. 49. Вып. 5. С. 1504.
  14. Вежлев Е.О., Воронин В.В., Кузнецов И.А. и др. // Письма в ЖЭТФ. 2012. Т. 96. Вып. 1. С. 3. https://doi.org/10.1134/S0021364012130127
  15. Абов Ю.Г., Елютин Н.О., Львов Д.В., Тюлюсов А.Н. // Ядерная физика. 2019. Т. 82. Вып. 4. https://doi.org/10.1134/S0044002719040032
  16. Абов Ю.Г. // Успехи физ. наук. 1996. Вып. 166. С. 949. https://doi.org/10.3367/UFNr.0166.199609d.0949

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (26KB)
3.

Baixar (68KB)
4.

Baixar (133KB)
5.

Baixar (109KB)

Declaração de direitos autorais © Й. Шмайснер, А.Н. Тюлюсов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies