Growth of Ferroelectric Domains in Polar Direction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The forward domain growth in polar direction has been investigated on the example of the formation of isolated wedge-shaped domains and arrays of domains on lithium niobate nonpolar cuts under an electric field of a scanning probe microscope. Domain growth occurs due to the generation of steps and motion of charged kinks along charged domain walls (CDWs). A simulation of field spatial distribution showed that the generation of steps near a domain vertex is mainly caused by the effect of external field, whereas the forward growth is due to the kink motion in the field induced by neighboring kinks. Scanning by a probe tip with an applied voltage leads to the self-assembled formation of domain arrays with domain length alternation: doubling, quadrupling, and chaotic behavior under the action of the depolarizing fields formed by three neighboring domains.

About the authors

V. Ya. Shur

Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia

Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

E. V. Pelegova

Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia

Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

A. P. Turygin

Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia

Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

M. S. Kosobokov

Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia

Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

Yu. M. Alikin

Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, Yekaterinburg, Russia

Author for correspondence.
Email: vladimir.shur@urfu.ru
Россия, Екатеринбург

References

  1. Tagantsev A.K., Cross L.E., Fousek J. Domains in ferroic crystals and thin films. Berlin: Springer, 2010. 822 p. https://doi.org/10.1007/978-1-4419-1417-0
  2. Newnham R.E., Miller C.S., Cross L.E. et al. // Phys. Status Solidi. 1975. V. 32. P. 69. https://doi.org/10.1002/pssa.2210320107
  3. Wada S. // Ferroelectrics. 2009. V. 389. P. 3. https://doi.org/10.1080/00150190902987335
  4. Shur V.Ya. // Advanced piezoelectric materials / Ed. Uchino K. Cambridge: Woodhead Publishing, 2017. P. 235. https://doi.org/10.1016/B978-0-08-102135-4.00006-0
  5. Fejer M.M., Magel G.A., Jundt D.H. et al. // IEEE J. Quantum Electron. 1992. V. 28. P. 2631. https://doi.org/10.1109/3.161322
  6. Hum D.S., Fejer M.M. // C. R. Phys. 2007. V. 8. P. 180. https://doi.org/10.1016/j.crhy.2006.10.022
  7. Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V. et al. // Ferroelectrics. 2000. V. 236. P. 129. https://doi.org/10.1080/00150190008016047
  8. Shur V.Ya., Akhmatkhanov A.R., Baturin I.S. // Appl. Phys. Rev. 2015. V. 2. P. 040604. https://doi.org/10.1063/1.4928591
  9. Классен-Неклюдова М.В., Чернышева М.А., Штернберг А.А. // Докл. АН СССР. 1948. Т. 18. С. 527.
  10. Matthias B., von Hippel A. // Phys. Rev. 1948. V. 73. P. 1378. https://doi.org/10.1103/PhysRev.73.1378
  11. Merz W.J. // Phys. Rev. 1954. V. 95. P. 690. https://doi.org/10.1103/PhysRev.95.690
  12. Little E.A. // Phys. Rev. 1955. V. 98. P. 978. https://doi.org/10.1103/PhysRev.98.978
  13. Le Bihan R. // Ferroelectrics. 1988. V. 97. P. 19. https://doi.org/10.1080/00150198908018081
  14. Gruverman A., Auciello O., Tokumoto H. // Annu. Rev. Mater. Sci. 1998. V. 28. P. 101. https://doi.org/10.1146/annurev.matsci.28.1.101
  15. Kholkin A.L., Kalinin S.V., Roelofs A., Gruverman A. // Scanning probe microscopy / Eds. Kalinin S., Gruverman A. New York: Springer, 2007. P. 173. https://doi.org/10.1007/978-0-387-28668-6_7
  16. Shur V.Ya. // Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications / Ed. Ye G.-Z. Cambridge: Woodhead Publishing, 2008. P. 622.
  17. Gopalan V., Mitchell T.E. // J. Appl. Phys. 1998. V. 83. P. 941. https://doi.org/10.1063/1.366782
  18. Shur V.Ya., Lobov A.I., Shur A.G. et al. // Appl. Phys. Lett. 2005. V. 87. P. 022905. https://doi.org/10.1063/1.1993769
  19. Alikin D.O., Ievlev A.V., Turygin A.P. et al. // Appl. Phys. Lett. 2015. V. 106. P. 182902. https://doi.org/10.1063/1.4919872
  20. Zalessky V.G., Fregatov S.O. // Phys. B. Condens. Matter. 2006. V. 371. P. 158. https://doi.org/10.1016/j.physb.2005.10.097
  21. Kokhanchik L.S., Borodin M.V., Shandarov S.M. et al. // Phys. Solid State. 2010. V. 52. P. 1722. https://doi.org/10.1134/S106378341008024X
  22. Volk T.R., Kokhanchik L.S., Gainutdinov R.V. et al. // Ferroelectrics. 2016. V. 500. P. 129. https://doi.org/10.1080/00150193.2016.1214527
  23. Ievlev A.V., Alikin D.O., Morozovska A.N. et al. // ACS Nano. 2015. V. 9. P. 769. https://doi.org/10.1021/nn506268g
  24. Turygin A.P., Alikin D.O., Alikin Yu.M. et al. // Materials. 2017. V. 10. P. 1143. https://doi.org/10.3390/ma10101143
  25. Lilienblum M., Soergel E. // J. Appl. Phys. 2011. V. 110. P. 052018. https://doi.org/10.1063/1.3623775
  26. Bühlmann S., Colla E., Muralt P. // Phys. Rev. B. 2005. V. 72. P. 214120. https://doi.org/10.1103/PhysRevB.72.214120
  27. Turygin A.P., Alikin D.O., Kosobokov M.S. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 36211. https://doi.org/10.1021/acsami.8b10220
  28. Ievlev A.V., Morozovska A.N., Eliseev E.A. et al. // Nat. Commun. 2014. V. 5. P. 4545. https://doi.org/10.1038/ncomms5545
  29. Kim Y., Bühlmann S., Hong S. et al. // Appl. Phys. Lett. 2007. V. 90. P. 072910. https://doi.org/10.1063/1.2679902
  30. Abplanalp M., Fousek J., Günter P. // Phys. Rev. Lett. 2001. V. 86. P. 5799. https://doi.org/10.1103/PhysRevLett.86.5799
  31. Ievlev A.V., Morozovska A.N., Shur V.Ya. et al. // Phys. Rev. B. 2015. V. 91. P. 214109. https://doi.org/10.1103/PhysRevB.91.214109
  32. Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V. et al. // Appl. Phys. Lett. 2000. V. 76. P. 143. https://doi.org/10.1063/1.125683
  33. Shur V.Ya., Rumyantsev E.L., Batchko R.G. et al. // Phys. Solid State 1999. V. 41. P. 1681. https://doi.org/0.1134/1.1131068
  34. Muller M., Soergel E., Buse K. // Opt. Lett. 2003. V. 28. P. 2515. https://doi.org/0.1134/1.1131068
  35. Molotskii M., Agronin A., Urenski P. et al. // Phys. Rev. Lett. 2003. V. 90. P. 107601. https://doi.org/10.1103/PhysRevLett.90.107601
  36. Molotskii M., Rosenwaks Y., Rosenman G. // Annu. Rev. Mater. Res. 2007. V. 37. P. 271. https://doi.org/10.1146/annurev.matsci.37.052506.084223
  37. Shur V.Ya., Rumyantsev E.L., Nikolaeva E.V. et al. // Appl. Phys. Lett. 2000. V. 77. P. 3636. https://doi.org/10.1063/1.1329327
  38. Sluka T., Tagantsev A.K., Bednyakov P. et al. // Nat. Commun. 2013. V. 4. P. 1808. https://doi.org/10.1038/ncomms2839
  39. Campbell M.P., McConville J.P.V., McQuaid R.G.P. et al. // Nat. Commun. 2016. V. 7. P. 13764. https://doi.org/10.1038/ncomms13764
  40. Esin A.A., Akhmatkhanov A.R., Shur V.Ya. // Appl. Phys. Lett. 2019. V. 114. P. 092901. https://doi.org/10.1063/1.5079478
  41. Pertsev N.A., Kholkin A.L. // Phys. Rev. B. 2013. V. 88. P. 174109. https://doi.org/10.1103/PhysRevB.88.174109
  42. Agronin A., Molotskii M., Rosenwaks Y. et al. // J. Appl. Phys. 2006. V. 99. P. 104102. https://doi.org/10.1063/1.2197264
  43. Shur V.Ya., Ievlev A.V., Nikolaeva E.V. et al. // J. Appl. Phys. 2011. V. 110. P. 052017. https://doi.org/10.1063/1.3624798
  44. Shur V.Ya. // Nucleation theory and applications / Ed. Schmelzer J.W.P. Weinheim: Wiley-VCH, 2005. P. 178. https://doi.org/10.1002/3527604790.ch6
  45. Shur V.Ya. // J. Mater. Sci. 2006. V. 41. P. 199. https://doi.org/10.1007/s10853-005-6065-7
  46. Agronin A., Molotskii M., Rosenwaks Y. et al. // J. Appl. Phys. 2006. V. 99. P. 104102. https://doi.org/10.1063/1.2197264
  47. Greshnyakov E.D., Turygin A.P., Pryakhina V.I. et al. // J. Appl. Phys. 2022. V. 131. P. 214103. https://doi.org/10.1063/5.0093200
  48. Fatuzzo E., Merz W.J. Ferroelectricity. Amsterdam: North-Holland Publishing Company, 1967. P. 289.
  49. Miller R.C., Weinreich G. // Phys. Rev. 1960. V. 117. P. 1460. https://doi.org/10.1103/PhysRev.117.1460
  50. Cahn J.W. // Acta Metall. 1960. V. 8. P. 554. https://doi.org/10.1016/0001-6160(60)90110-3
  51. Shur V.Ya. // Ferroelectric thin films: synthesis and basic properties / Eds. Paz de Araujo C.A. et al. Amsterdam: Gordon & Breach Science Publishers, 1996. P. 153.
  52. Marwan N., Romano M.C., Thiel M. et al. // Phys. Rep. 2007. V. 438. P. 237. https://doi.org/10.1016/j.physrep.2006.11.001

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (775KB)
3.

Download (1MB)
4.

Download (184KB)
5.

Download (603KB)
6.

Download (587KB)
7.

Download (905KB)

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».