Relaxor Ferroelectric PbNi1/3Ta2/3O3: Synthesis, Structure, Raman Spectra, and Dielectric Susceptibility

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The structure of the relaxor ferroelectrics PbNi1/3Ta2/3O3 (PNT) was studied by powder X-ray diffraction. The measurements were performed at 313.5 ± 1 K using a powder, which was prepared by grinding PNT single crystals grown by the spontaneous crystallization. The structure refinement and the fitting of the simulated diffraction pattern to the experimental data were performed by the Rietveld method. It was demonstrated that the grown crystals of PNT have a perovskite structure (sp. gr. Pm3m (221), a = 4.02679(2) Å). Polarized Raman spectra of PNT were recorded at room temperature. The main modes of the light scattering spectra were assigned to the Е1 and А1 components of the transverse optical phonon (ТО1) and the А1 component of the longitudinal optical phonon (LO3). The temperature dependence of the dielectric susceptibility shows a broad frequency-dependent anomaly with a maximum at 89 К at a frequency of 1 kHz.

Авторлар туралы

A. Levin

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Email: Sergey.Lushnikov@mail.ioffe.ru
Россия, Санкт-Петербург

T. Smirnova

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Email: Sergey.Lushnikov@mail.ioffe.ru
Россия, Санкт-Петербург

E. Obozova

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Email: Sergey.Lushnikov@mail.ioffe.ru
Россия, Санкт-Петербург

V. Zalesskii

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Email: Sergey.Lushnikov@mail.ioffe.ru
Россия, Санкт-Петербург

A. Fedoseev

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Email: Sergey.Lushnikov@mail.ioffe.ru
Россия, Санкт-Петербург

S. Lushnikov

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Хат алмасуға жауапты Автор.
Email: Sergey.Lushnikov@mail.ioffe.ru
Россия, Санкт-Петербург

Әдебиет тізімі

  1. Смоленский Г.А., Аграновская А.И. // ФТТ. 1959. Т. 1. С. 1562.
  2. Боков В.А., Мыльникова И.Е. // ФТТ. 1960. Т. 11. С. 2728.
  3. Cross L.E. // Ferroelectrics. 1987. V. 76. P. 241. https://doi.org/10.1080/00150198708016945
  4. Смоленский Г.А., Боков В.А., Юсупов В.А. и др. Физика сегнетоэлектрических явлений. Л.: Наука, 1985.
  5. Cowley R.A., Gvasaliya S.N., Lushnikov S.G. et al. // Adv. Phys. 2011. V. 60. P. 229. https://doi.org/10.1080/00018732.2011.555385
  6. Kimura T., Goto T., Shintani H. et al. // Nature. 2003. V. 426. P. 55. https://doi.org/10.1038/nature02018
  7. Blinc R., Cevc P., Zorko A. et al. // J. Appl. Phys. 2007. V. 101. P. 033901. https://doi.org/10.1063/1.2432309
  8. Chillia S. Microscopic coexistence of antiferromagnetic and spin glass states in disordered perovskites, PhD Thesis. ETH, Zurich, 2015.
  9. Shirakami T., Mituskawa M., Imai T., Urabe K. // Jpn. J. Appl. Phys. 2000. V. 39. L678. https://doi.org/10.1143/JJAP.39.L678
  10. Ханнанов Б.Х., Залесский В.Г., Головенчиц Е.И. и др. // ЖЭТФ. 2020. Т. 157. С. 523. https://doi.org/10.31857/S004445102003013X
  11. Полушина А.Д., Обозова Е.Д., Залесский В.Г. и др. // ФТТ. 2021. Т. 63. С. 1382.
  12. Li Z., Vilarinho P.M. // J. Eur. Ceram. Soc. 2005. V. 25. P. 2527. https://doi.org/10.1016/j.jeurceramsoc.2005.03.213
  13. Preeti C., Pandey A., Selvamani R. et al. // Ferroelectrics. 2017. V. 517. P. 90. https://doi.org/10.1080/00150193.2017.1370265
  14. Bruker AXS. Diffrac. Suite Eva. Version 5.1.0.5. Bruker AXS, Karlsruhe. Germany, 2019.
  15. International Centre for Diffraction Data (ICDD), Powder Diffraction File-2 Release 2014. ICDD: Newton Square, PA, USA, 2014.
  16. Maunders C., Etheridge J., Wright N., Whitfield H.J. // Acta. Cryst. B. 2005. V. 61. P. 154. https://doi.org/10.1107/S0108768105001667
  17. Levin A.A. Program SizeCr for calculation of the microstructure parameters from X-ray diffraction data. Preprint. ResearchGate. 2022. https://doi.org/10.13140/RG.2.2.15922.89280
  18. Terlan B., Levin A.A., Börrnert F. et al. // Chem. Mater. 2015. V. 27. P. 5106. https://doi.org/10.1021/acs.chemmater.5b01856
  19. Terlan B., Levin A.A., Börrnert F. et al. // Eur. J. Inorg. Chem. 2016. V. 6. P. 3460. https://doi.org/10.1002/ejic.201600315
  20. Rietveld H.M. // Acta Cryst. 1967. V. 22. P. 151. https://doi.org/10.1107/S0365110X67000234
  21. Le Bail A., Duroy H., Fourquet J.L. // Mat. Res. Bull. 1988. V. 23. P. 447. https://doi.org/10.1016/0025-5408(88)90019-0
  22. Brucker AXS, TOPAS, Version 5, Technical reference, Brucker AXS, Karlsruhe, Germany, 2014.
  23. Bérar J.-F., Lelann P.J. // J. Appl. Cryst. 1991. V. 2. P. 1. https://doi.org/10.1107/S0021889890008391
  24. Levin A.A. “Program RietESD for correction of estimated standard deviations obtained in Rietveld-refinement programs”, Preprint, ResearchGate. 2022. https://doi.org/10.13140/RG.2.2.10562.04800
  25. Andreev Yu.G. // J. Appl. Cryst. 1994. V. 27. P. 288. https://doi.org/10.1107/S002188989300891X
  26. Popova E.A., Zalessky V.G., Shaplygina T.A. et al. // Ferroelectrics. 2011. V. 412. P. 15. https://doi.org/10.1080/00150193.2011.542688
  27. Hill R.J. // Acta Cryst. C. 1985. V. 41. P. 1281. https://doi.org/10.1107/S0108270185007454
  28. Sasaki S., Fujino K., Takeuchi Y. // Proc. Jpn. Acad. B. 1979. V. 55. P. 43. https://doi.org/10.2183/pjab.55.43
  29. Konyasheva E., Suard E., Irvine J.T.S. // Chem. Mater. 2009. V. 21. P. 5307. https://doi.org/10.1021/cm902443n
  30. Shimomura Y., Kojima M., Saito S. // J. Phys. Soc. Jpn. 1956. V. 11. P. 1136. https://doi.org/10.1143/JPSJ.11.1136
  31. Хитрова В.И., Клечковская В.В., Пинскер З.Г. // Кристаллография. 1972. Т. 17. С. 506.
  32. Langford J.I., Cernik R.J., Louer D. // J. Appl. Phys. 1991. V. 24. P. 913. https://doi.org/10.1107/S0021889891004375
  33. Stokes A.R., Wilson A.J.C. // Proc. Phys. Soc. London 1944. V. 56. P. 174. https://doi.org/10.1088/0959-5309/56/3/303
  34. Scherrer P. // Nachr. Kӧnigl. Ges. Wiss. Gӧttingen. 1918. V. 26. P. 98. (in German).
  35. Berger H. // X-ray Spectrom. 1986. V. 15. P. 241. https://doi.org/10.1002/xrs.1300150405
  36. Cheary R.W., Coelho A.A. // J. Appl. Cryst. 1992. V. 25. P. 109. https://doi.org/10.1107/S0021889891010804
  37. Balzar D. Voigt-function model in diffraction line-broadening analysis / Eds. Snyder R.L. et al. Defect and Microstructure Analysis by Diffraction, IUCr, Oxford Uni. Press, 1999. P. 94. https://doi.org/10.1107/S0021889890008391
  38. Dollase W.A. // J. Appl. Cryst. 1986. V. 19. P. 267. https://doi.org/10.1107/S0021889886089458
  39. Pecharsky V.K., Zavalij P.Y., Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd edition, Springer Science+Business Media, LLC, 2009. https://doi.org/10.1007/978-0-387-09579-0
  40. Hill R.J., Fischer R.X. // J. Appl. Cryst. 1990. V. 23. P. 462. https://doi.org/10.1107/S0021889890006094
  41. Young R.A. Introduction to the Rietveld Method / Ed. Young R.A. The Rietveld Method, IUCr Book Series Oxford Uni. Press, Oxford, UK, 39 p.
  42. Hall M.M. Jnr, Veeraraghavan V.G., Rubin H., Winchell P.G. // J. Appl. Cryst. 1977. V. 10. P. 66. https://doi.org/10.1107/S0021889877012849
  43. Lushnikov S.G., Gvasaliya S.N., Katiyar R. // Phys. Rev. B. 2004. V. 70. 172101. https://doi.org/10.1103/PhysRevB.70.172101
  44. Gvasaliya S.N., Roessli B., Sheptyakov D. et al. // Eur. Phys. J. B. 2004. V. 40. P. 235. https://doi.org/10.1140/epjb/e2004-00276-8
  45. Siny I.G., Katiyar R.S., Bhalla A.S. // Ferroelectr. Rev. 2000. V. 2. P. 51.
  46. Lee J.W., Ko J.-H., Fedoseev A.I. et al. // J. Phys. Condens. Matter. 2021. V. 33. 025402. https://doi.org/10.1088/1361-648X/abb67f

Қосымша файлдар


© А.А. Левин, Т.А. Смирнова, Е.Д. Обозова, В.Г. Залесский, А.И. Федосеев, С.Г. Лушников, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>