POSSIBILITIES OF MODERN SCANNING TRANSMISSION ELECTRON MICROSCOPY FOR STUDYING BORON CARBIDES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A promising method of scanning transmission electron microscopy is the use of integrated differential phase contrast. Its advantages include high sensitivity to light elements, almost linear relation between the generated image contrast and atomic numbers of Z atoms contained in a sample, noise suppression, and much more. Using the modeling and mathematical processing, prospects of this technique for studying the crystal structure of materials consisting of light atoms have been analyzed by the example of boron carbide polytypes. It is shown that the sensitivity of the technique makes it possible to distinguish columns of boron atoms from columns consisting of carbon. Recommendations on using this technique for analyzing the structures consisting of light elements are formulated.

About the authors

I. S. Pavlov

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: ispav88@gmail.com
Россия, Москва

V. I. Bondarenko

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: ispav88@gmail.com
Россия, Москва

A. L. Vasiliev

National Research Centre “Kurchatov Institute,” Moscow, 123182 Russia; Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; Moscow Institute of Physics and Technology, Moscow oblast, Dolgoprudny, 141701 Russia

Author for correspondence.
Email: a.vasiliev56@gmail.com
Россия, Москва; Россия, Москва; Россия, Москва

References

  1. Williams D.B., Carter C.B. The transmission electron microscope. Berlin: Springer, 1996. 757 p.
  2. Lazić I., Bosch E.G.T. // Adv. Imaging Electron Phys. 2017. V. 199. P. 75. https://doi.org/10.1016/bs.aiep.2017.01.006
  3. Hetherington C. // Mater. Today. 2004. V. 7. P. 50. https://doi.org/10.1016/S1369-7021(04)00571-1
  4. Rosenauer A., Gries K., Müller K. et al. // Ultramicroscopy. 2009. V. 109. P. 1171. https://doi.org/10.1016/j.ultramic.2009.05.003
  5. Molina S.I., Sales D.L., Galindo P.L. et al. // Ultramicroscopy. 2009. V. 109. P. 172. https://doi.org/10.1016/j.ultramic.2008.10.008
  6. LeBeau J.M., Findlay S.D., Allen J.M. et al. // Phys. Rev. Lett. 2008. V. 100. P. 206101. https://doi.org/10.1103/PhysRevLett.100.206101
  7. Dwyer C., Maunders C., Zheng C.L. et al. // Appl. Phys. Lett. 2012. V. 100. P. 191915. https://doi.org/10.1063/1.4711766
  8. Yücelen E., Lazić I., Bosch E.G.T. // Sci. Rep. 2018. V. 8. P. 2676. https://doi.org/10.1038/s41598-018-20377-2
  9. Dekkers N.H., De Lang H. // Optik (Stuttg). 1974. V. 41. P. 452.
  10. Shibata N., Kohno Y., Findlay S.D. et al. // J. Electron Microsc. (Tokyo). 2010. V. 59. P. 473. https://doi.org/10.1093/jmicro/dfq014
  11. Lazić I., Bosch E.G.T., Lazar S. // Ultramicroscopy. 2016. V. 160. P. 265. https://doi.org/10.1016/j.ultramic.2015.10.011
  12. Waddell E.M. // Optik (Stuttg). 1979. V. 54. P. 83.
  13. Bosch E.G.T., Lazić I. // Ultramicroscopy. 2015. V. 156. P. 59. https://doi.org/10.1016/j.ultramic.2015.02.004
  14. Thévenot F. // J. Eur. Ceram. Soc. 1990. V. 6. P. 205. https://doi.org/10.1016/0955-2219(90)90048-K
  15. Domnich V., Reynaud S., Haber R. et al. // J. Am. Ceram. Soc. 2011. V. 94. P. 3605. https://doi.org/10.1111/j.1551-2916.2011.04865.x
  16. Chen M., McCauley J.W., Hemker K.J. // Science. 2003. V. 299. P. 1563. https://doi.org/10.1126/science.1080819
  17. Ghosh D.S., Ghatu S., Tirumalai S.R. et al. // J. Am. Ceram. Soc. 2007. V. 90. P. 1850. https://doi.org/10.1111/j.1551-2916.2007.01652.x
  18. Madhav R.K., Guo J.J., Shinoda Y. et al. // Nat. Commun. 2012. V. 3. P. 1052. https://doi.org/10.1038/ncomms2047
  19. Reddy K., Liu P., Hirata A. et al. // Nat. Commun. 2013. V. 4. P. 2483. https://doi.org/10.1038/ncomms3483
  20. Brook R.J., Cahn R.W., Bever M.B. Concise encyclopedia of advanced ceramic materials. N.Y.: Pergamon Press, 1991. 592 p.
  21. Ashbee K.H.G. // Acta Metall. 1971. V. 19. P. 1079. https://doi.org/10.1016/0001-6160(71)90040-X
  22. Bai H., Ma N., Lang J. et al. // Mater. Des. 2013. V. 46. P. 740. https://doi.org/10.1016/j.matdes.2012.09.053
  23. Sankaranarayanan S., Sabat R.K., Jayalakshmi S. et al. // Mater. Des. 2014. V. 56. P. 428. https://doi.org/10.1016/j.matdes.2013.11.031
  24. Жданов Г.С., Севастьянов Н.Г. // Докл. АН СССР. 1941. Т. 32. С. 432.
  25. Clark H.K., Hoard J.L. // J. Am. Chem. Soc. 1943. V. 65. P. 2115. https://doi.org/10.1021/ja01251a026
  26. Ekbom L.B., Amundin C.O. // Sci. Ceram. 1981. V. 11. P. 237.
  27. Beauvy M. // J. Less Common Met. 1983. V. 90. P. 169. https://doi.org/10.1016/0022-5088(83)90067-X
  28. Silver A.H., Bray P.J. // J. Chem. Phys. 1959. V. 31. P. 247. https://doi.org/10.1063/1.1730302
  29. Lee D., Bray P.J., Aselage T.L. // J. Phys. Condens. Matter. 1999. V. 11. P. 4435. https://doi.org/10.1088/0953-8984/11/22/314
  30. Mauri F., Vast N., Pickard C.J. // Phys. Rev. Lett. 2001. V. 87. P. 855061. https://doi.org/10.1103/PhysRevLett.87.085506
  31. Lazzari R., Vast N., Besson J.M. et al. // Phys. Rev. Lett. 1999. V. 83. P. 3230. https://doi.org/10.1103/PhysRevLett.83.3230
  32. Hoard J.L., Hughes R.E. // Chem. Boron Its Compd. 1967. P. 26.
  33. Morosin B., Mullendore A.W., Emin D. et al. // AIP Conference Proceedings. 1986. V. 140. P. 70. https://doi.org/10.1063/1.35589
  34. Larson A.C. // AIP Conference Proceedings. 1986. V. 140. P. 109. https://doi.org/10.1063/1.35619
  35. Kwei G.H., Morosin B. // J. Phys. Chem. 1996. V. 100. P. 8031. https://doi.org/10.1021/jp953235j
  36. Walters K.L., Green G.L. Thes. speech. Los Alamos Natl. Lab. “Adv. Plutonium Fuels”, Los Alamos, 1970. P. 14.
  37. Kirfel A., Gupta A., Will G. // Acta Cryst. B. 1979. V. 35. P. 1052. https://doi.org/10.1107/s0567740879005562
  38. Emin D. // Phys. Rev. B. 1988. V. 38. P. 6041. https://doi.org/10.1103/PhysRevB.38.6041
  39. Yakel H.L. // Acta Cryst. B. 1975. V. 31. P. 1797. https://doi.org/10.1107/S0567740875006267
  40. Fujita T., Guan P., Madhav Reddy K. et al // Appl. Phys. Lett. 2014. V. 104. P. 021907. https://doi.org/10.1063/1.4861182
  41. Демиденко Е.З. Линейная и нелинейная регрессия. М.: Финансы и статистика, 1981. 304 с.
  42. Van Aert S., Verbeeck J., Erni R. et al. // Ultramicroscopy. 2009. V. 109. P. 1236. https://doi.org/10.1016/j.ultramic.2009.05.010
  43. Бондаренко В.И., Васильев А.Л. Тез. докл. XXVIII Рос. конф. по эл. микр. “Количественный анализ изображений точечных дефектов в ПРЭМ”, Черноголовка 2020. С. 24.
  44. Гонзалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2005. 1072 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (518KB)
3.

Download (427KB)
4.

Download (202KB)
5.

Download (1MB)
6.

Download (177KB)
7.

Download (185KB)

Copyright (c) 2023 И.С. Павлов, В.И. Бондаренко, А.Л. Васильев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies