FEATURES OF VISUALIZATION OF THE THREE-DIMENSIONAL STRUCTURE OF MESOPOROUS PZT FILMS BY FIB-SEM NANOTOMOGRAPHY

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A technique for studying the three-dimensional structure of porous lead zirconate titanate films by FIB-SEM-nanotomography is presented. Such quantitative characteristics as total porosity, specific surface area, and actual pore size (calculated using the local thickness method) have been obtained. According to the FIB-SEM-nanotomography data, the pore size is 77 ± 33 nm for the film with the PVP porogen and only 27 ± 6 nm for the film with the Brij76 porogen; the latter value is close to the limiting resolution for this method. The final 3D model is shown to be strongly influenced by the chosen ion-beam parameters during milling, which can be varied to obtain a structure without distortion or visualize the accumulation of pores at grain boundaries.

作者简介

A. Atanova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: atanova.a@crys.ras.ru
Россия, Москва

D. Khmelenin

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: atanova.a@crys.ras.ru
Россия, Москва

O. Zhigalina

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; Bauman Moscow State Technical University, Moscow, 107005 Russia

编辑信件的主要联系方式.
Email: atanova.a@crys.ras.ru
Россия, Москва; Россия, Москва

参考

  1. Kozuka H., Takenaka S. // J. Am. Ceram. Soc. 2002. V. 85. № 11. P. 2696. https://doi.org/10.1111/j.1151-2916.2002.tb00516.x
  2. Seregin D., Vorotilov K., Sigov A., Kotova N. // Ferroelectrics. 2015. V. 484. № 1. P. 43. https://doi.org/10.1080/00150193.2015.1059680
  3. Ferreira P., Hou R., Wu A. et al. // Langmuir. 2012. V. 28. № 5. P. 2944. https://doi.org/10.1021/la204168w
  4. Castro A., Ferreira P., Rodriguez B.J., Vilarinhoa P.M. // J. Mater. Chem. C. 2015. V. 3. № 5. P. 1035.
  5. Justin M., Ghoshal T., Deepak N. et al. // Chem. Mater. 2013. V. 25. № 8. P. 1458. https://doi.org/10.1021/cm303759r
  6. Kim Y., Han H., Kim Y. et al. // Nano Lett. 2010. V. 10. № 6. P. 2141. https://doi.org/10.1021/cm303759r
  7. Levanyuk A.P., Sigov A.S. Defects and structural phase transitions. New York: Gordon and Breach Science Publishers, 1988. https://doi.org/10.1021/cm303759r
  8. Zhang Y., Roscow J., Lewis R. et al. // Acta Mater. 2018. V. 154. P. 100. https://doi.org/10.1016/j.actamat.2018.05.007
  9. Mercadelli E., Galassi C. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020. V. 3010. № C. P. 1. https://doi.org/10.1109/TUFFC.2020.3006248
  10. Stancu V., Buda M., Pintilie L. et al. // J. Optoelectron. Adv. Mater. 2007. V. 9. № 5. P. 1516.
  11. Holzer L., Indutnyi F., Gasser P. et al. // J. Microsc. 2004. V. 216. № 1. P. 84. https://doi.org/10.1111/j.0022-2720.2004.01397.x
  12. Atanova A.V., Zhigalina O., Khmelenin D. et al. // J. Am. Ceram. Soc. 2021. V. 105. № 1. P. 639. https://doi.org/10.1111/jace.18064
  13. Holzer L., Cantoni M. Review of FIB-tomography. Nanofabrication using focused ion and electron beams: Principles and applications. 2012. P. 410.
  14. Thévenaz P., Ruttimann U.E., Unser M. // IEEE Trans. Image Process. 1998. V. 7. № 1. P. 27. https://doi.org/10.1109/83.650848
  15. Tseng Q., Wang I., Duchemin-Pelletier E. et al. // Lab Chip. 2011. V. 11. № 13. P. 2231. https://doi.org/10.1039/c0lc00641f
  16. Roels J., Vernaillen F., Kremer A. et al. // Nat. Commun. 2020. V. 11. V. 1. P. 771. https://doi.org/10.1038/s41467-020-14529-0
  17. Arganda-Carreras I., Kaynig V., Rueden C. et al. // Bioinformatics. 2017. V. 33. № 15. P. 2424. https://doi.org/10.1093/bioinformatics/btx180
  18. Ollion J., Cochennec J., Loll F. et al. // Bioinformatics. 2013. V. 29. № 14. P. 1840. https://doi.org/10.1093/bioinformatics/btt276
  19. Arganda-Carreras I., Fernández-González R., Muñoz-Barrutia A., Ortiz-De-Solorzano C. // Microsc. Res. Tech. 2010. V. 73. № 11. P. 1019. https://doi.org/10.1002/jemt.20829
  20. Hu Y., Limaye A., Lu J. // R. Soc. Open Sci. 2020. V. 7. № 12. P. 201033. https://doi.org/10.1098/rsos.201033
  21. Taillon J.A., Pellegrinelli C., Huang Y.L. et al. // Ultramicroscopy. 2018. V. 184. P. 24. https://doi.org/10.1016/j.ultramic.2017.07.017
  22. Fager C., Röding M., Olsson A. et al. // Microsc. Microanal. 2020. V. 26. № 4. P. 837. https://doi.org/10.1017/S1431927620001592
  23. Taillon J.A. Advanced analytical microscopy at the nanoscale: applications in wide bandgap and solid oxide fuel cell materials. University of Maryland. 2016.
  24. Smith J.R., Chen A., Gostovic D. et al. // Solid State Ionics. 2009. V. 180. № 1. P. 90. https://doi.org/10.1016/j.ssi.2008.10.017
  25. Hildebrand T., Rüegsegger P. // J. Microsc. 1997. V. 185. № 1. P. 67. https://doi.org/10.1046/j.1365-2818.1997.1340694.x
  26. Dougherty R., Kunzelmann K.-H. // Microsc. Microanal. 2007. V. 13. № S02. P. 1678. https://doi.org/10.1017/S1431927607074430

补充文件

附件文件
动作
1. JATS XML
2.

下载 (740KB)
3.

下载 (2MB)
4.

下载 (461KB)
5.

下载 (2MB)
6.

下载 (328KB)
7.

下载 (1MB)
8.

下载 (1MB)
9.

下载 (678KB)
10.

下载 (2MB)

版权所有 © А.В. Атанова, Д.Н. Хмеленин, О.М. Жигалина, 2023

##common.cookie##