A Recursive Partitioning for Anomaly Detection in Tracking Satellite Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study presents a method for detecting anomalous measurements in the trajectory data of spacecraft, based on recursive partitioning of the time series of observations. This method analyzes the standard deviation of the data, effectively identifying anomalous measurements characterized by elevated noise levels. A significant advantage of this approach is the lack of requirement for prior knowledge of the initial orbital approximation and the absence of a need for pre-training. It has been tested on synthetic datasets with artificially introduced anomalies, as well as on real data from the “Spektr-R” spacecraft. The results demonstrated an accuracy of 96 % compared to other traditional anomaly detection methods. The algorithm of this method is applicable to various types of orbits and scales of observations. Its code is available for public use.

About the authors

P. R. Zapevalin

Astro Space Center of P.N. Lebedev Physics Institute

Author for correspondence.
Email: pav9981@yandex.ru
Moscow, Russia

References

  1. Zapevalin P.Multi-GNSS Observations Simulation // Cosmic Research. 2024. V. 62. Iss. 5. P. 424–435.
  2. Zakhvatkin M.V., Andrianov A.S., Avdeev V.Yu. et al.RadioAstron orbit determination and evaluation of its results using correlation of space-VLBI observations //Advances in Space Research. 2020. V. 65(2). P. 798–812.
  3. Montenbruck O., Gill E.Satellite Tracking and Observation Models // Satellite Orbits: Models, Methods and Applications. Springer-Verlag Berlin Heidelberg, 2000. P. 193–232.
  4. Tuchin D.A.Selection of anomalous measurements during primary processing in orbit determination from the trajectory information of the ground station Cobalt-R // Keldysh Institute of Applied Mathematics Preprints. 2022. Iss. 58.
  5. Zakhvatkin M.V., Andrianov A.S., Avdeev V.Yu. et al.RadioAstron orbit determination and evaluation of its results using correlation of space-VLBI observations // Advances in Space Research. 2020. V. 65. Iss. 2. P. 798–812.
  6. Kovalenko I.D., Eismont N.A.Orbit design for the Spectrum-Roentgen-Gamma mission // Acta Astronautica. 2019. V. 160. P. 56–61.
  7. Эскобал П.Р.Методы определения орбит. М.: Мир, 1970. 471 с. (Перевод с англ. В.И. Ноздрина и В.М. Рудакова. Под ред. В.Г. Демина).
  8. Губанов В.С.Оценивание стохастических параметров обобщенным методом наименьших квадратов. СПб.: Институт прикладной астрономии РАН, 1994. 12 с. (Сообщения ИПА РАН; № 60).
  9. Tapley B.D., Schutz B.E., Born, G.H.Statistical Orbit Determination. Elsevier Academic Press, 2004. 563 p.
  10. Эльясберг П.Е. Определение движения по результатам измерений. М.: Наука, 1976. 416 с.
  11. Kalman R.A new approach to linear filtering and prediction problems transaction of the asme journal of basic // J. Basic Engineering (American Society of Mechanical Engineers). 1960. V. 82. Iss. 1. P. 35–45.
  12. Sorenson H.Kalman filtering : theory and application. IEEE Press, 1985. 457 p.
  13. D’Souza C.Fundamentals of Kalman Filtering and Estimation in Aerospace Engineering. NASA // Johnson Space Center. Houston, Texas, 2013.83 p.
  14. Coronel D., Guevara C.Anomaly Detection in the Uniaxial Vibration in Wind Turbines Applying Linear Regression and Z-score // Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Seattle WA, USA. 2024. P. 169–176.
  15. Chen D. and Meng D., Wang F. et al.A study of ionospheric anomaly detection before the August 14, 2021 Mw7.2 earthquake in Haiti based on sliding interquartile range method // Acta Geodaetica et Geophysica. 2023. V. 58. P. 539–551.
  16. Romo-Chavero M.A., Cantoral-Ceballos J.A., Pérez J.A. et al. Median Absolute Deviation for BGP Anomaly Detection // Future Internet. 2024. V. 16(5). Art.ID. 146.
  17. Grubbs F.E.Sample Criteria for Testing Outlying Observations // The Annals of Mathematical Statistics. 1950. 21(1). P. 27–58.
  18. Duchnowski R., Wiśniewski Z.Accuracy of the Hodges–Lehmann estimates computed by applying Monte Carlo simulations // Acta Geodaetica et Geophysica. 2016. V. 52. P. 511–525.
  19. Baireddy S., Desai S., Mathieson J. et al.Spacecraft Time-Series Anomaly Detection Using Transfer Learning // Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Nashville, TN, USA. 2021.
  20. Zapevalin P.R., Novoselov A., Zharov V.E. Artificial neural network for star tracker centroid computation // Advances in Space Research. 2022. V. 71. Iss. 9. P. 3917–3925.
  21. Herrmann L., Bieber M., Verhagen W. et al. Unmasking overestimation: a re-evaluation of deep anomaly detection in spacecraft telemetry // CEAS Space J. 2024. V. 16. P. 225–237.
  22. Cuéllar Carrillo S., Santos Penas M., Alonso F. et al. Explainable anomaly detection in spacecraft telemetry // Engineering Applications of Artificial Intelligence. V. 133(4). P. 1–15.
  23. Biswas G., Khorasgani H., Stanje G. et al. An Application of Data Driven Anomaly Identification to Spacecraft Telemetry Data // Annual Conference of the PHM Society. 2016. V. 8(1).
  24. Liu L., Tian L., Kang Zh. et al.Spacecraft Anomaly Detection with Attention Temporal Convolution Network // Neural Computing and Applications. 2023. V. 35. P. 9753–9761.
  25. Ré N.P., Popplewell M., Caudill M. et al. Transformers for Orbit Determination Anomaly Detection and Classification // Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Seattle, WA, USA. 2024. P. 6819–6827.
  26. Hundman K., Constantinou V., Laporte C. et al. Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding // Proc. 2018 ACM SIGSAC Conference on Computer and Communications Security. London, United Kingdom. 2018. P. 387–395.
  27. Montenbruck O., Gill E.Satellite Orbits. Models, Methods, and Applications. Springer-Verlag Berlin Heidelberg, 2000. 382 p.
  28. Kara I., Bazyey O.Using of Everhart’s method of 15, 17, 19 and 21st-order for computation of celestial bodies’ trajectories in the circumplanetary space // Astronomical School’s Report. 2009. V. 6(1–2). P. 155–157.
  29. Jin S., Cardellach E., Xie F. Introduction to GNSS // GNSS Remote Sensing. Remote Sensing and Digital Image Processing. V. 19. Springer, 2014. P. 3–16. ISBN: 978-94-007-7481-0. doi: 10.1007/978-94-007-7482-7.
  30. Gulyaeva T. Investigation of total electron content deduced from TOPEX-JASON and GPS-IONEX maps over land and oceans // Proc. 37th COSPAR Scientific Assembly. Montréal, Canada. 2008. V. 37. P. 31–36.
  31. Mendes V., Langley R.Tropospheric zenith delay prediction accuracy for airborne GPS high-precision positioning // Proc. Institute of Navigation 54th Annual Meeting. 1998. P. 337–347.
  32. Boehm J., Niell A., Tregoning P. et al.Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data // Geophysical Research Letters. 2006. V. 33(7).
  33. Kutschera M., Zajiczek W.Shapiro effect for relativistic particles — testing General Relativity in a new window // Acta Physica Polonica Series B. 2009. V. 41(6).
  34. Zakhvatkin M., Ponomarev Yu., Stepanyants V.Navigation support for the RadioAstron mission // Cosmic Research. 2014. V. 52(4). P. 342–352.
  35. Тучин Д.А. Определение орбиты на борту космического аппарата // Известия РАН. Теория и системы управления. 2020. № 3. С. 126–147.
  36. Lam Q., Junker D., Anhalt D. et al. Analysis of an Extended Kalman Filter Based Orbit Determination System // Proc. AIAA Guidance, Navigation, and Control Conference. Toronto, Ontario, Canada. 2010.
  37. Luo J., Ying K., Bai L.Savitzky–Golay smoothing and differentiation filter for even number data // Signal Processing. 2005. V. 85(7). P. 1429–1434.
  38. Virtanen P., Gommers R., Oliphant T.E. et al.SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python // Nature Methods. 2020. V. 17. (Suppl. 1). P. 1–12.
  39. Dach R., Andritsch F., Arnold D. et al. Bernese GNSS Software Version 5.2. Bern: Astronomical Institute, University of Bern, 2015.
  40. Rudnitskiy A., Mzhelskiy P.V., Shchurov M. et al. Analysis of orbital configurations for Millimetron space observatory // Acta Astronautica. 2022. V. 196(1). P. 29–41.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».