ON THE PECULIARITIES OF THE REGISTRATION OF PROTONS OF THE INNER BELT ON METEOR SATELLITES BY OMNIDIRECTIONAL AND NARROWLY FOCUSED DETECTORS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The Meteor-M № 1 and Meteor-M № 2 satellites had a group of omnidirectional counters and a group of narrow-beam multi-channel telescopic instruments. The telescopes were mounted along the velocity vector of the satellite and radially to the zenith. During flights through the inner belt in the direction from the equator to the south pole, the latitudinal profiles of protons in the channels of omnidirectional counters and in the channels of telescopes of different directions were located one below the other. When flying in the opposite direction, the “omnidirectional” profile approximately maintained its position, and the profiles in the channels of the telescopes of different directions shifted relative to the “omnidirectional” profile in opposite directions. The high-altitude course of the protons of the inner belt in the channels of the telescopes is a complex of elements of various shapes. The relative position of these elements depends on the direction of the telescope’s axis and the direction of the satellite’s motion. Algorithms and calculation results for the orientation of the axes of the telescopes relative to the magnetic field vector are presented. It is shown that the orientation of the axes of the telescopes depends on the longitude and on the direction of motion of the satellite. Depending on this, different areas of the pitch-angular distribution of particles fall into the field of view of the telescope. Based on a simple model of the pitch angular distribution of proton fluxes in the form of j≈sin(α), the fluxes that can enter the field of view of the telescope were calculated. It was taken into account that part of the intake cone itself may lie inside the cone of atmospheric losses. The simulation results of latitude and altitude movements showed a qualitative agreement with the satellite observations.

Sobre autores

E. Ginzburg

Institute of Applied Geophysics named after Academician E. K. Fedorov, Roshydromet

Email: e_ginzburg@mail.ru
Moscow, Russia

Bibliografia

  1. Sawyer D.M., Vette J.L. AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum. Report Number NASA-TM-X-72605. NSSDC/WDC-A-R/S-76-06. Greenbelt, Maryland: 1976.
  2. Vette J.L. The AE-8 trapped electron model environment. Report Number: NASA-TM-107820. Report Number: NSSDC/WDC-A-RS-91-24. Greenbelt, Maryland, 1991.
  3. Ginet G.P., O’Brien T.P., Huston S.L. et al. AES, AP9 and SPM: New Models for Specifying the Trapped Energetic Particle and Space Plasma Environment // Space Sci. Rev. 2013. V. 179. Iss. 1–4. P. 579–615.
  4. Гецелев И.В., Сосновец Э.Н., Ковтюх А.С. и др. Эмпирическая модель радиационного пояса ядер гелия // Косм. исслед. 2005. Т. 43. № 4. С. 243–247.
  5. Кузнецов Н.В., Николаев Н.И. Эмпирическая модели питч-угловых распределений захваченных протонов на внутренней границе радиационного пояса Земли // Косм. исслед. 2012. Т. 50. № 1. С. 15–22.
  6. Корн Г., Корн Т. Справочник по математике. Москва: “Наука”, 1968.
  7. Акасафу С.И., Чепмен С. Солнечно-земная физика. Т. 1. Москва: “Мир”, 1974.
  8. Панасюк М.И., Калмыков Н.Н., Ковтюх А.С. и др. Радиационные условия в космическом пространстве. Москва: Библион-Русская книга, 2006.
  9. Редерер Х. Динамика радиации, захваченной геомагнитным полем. Москва: “Мир”, 1972.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).