Neutron emission from the moon during the historic Carrington solar particle event of September 1, 1859

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The neutron radiation of the lunar surface under the influence of energetic charged particle flux from the intense Solar Proton Event (SPE) is considered. Numerical estimates of the neutron flux and the corresponding neutron component of the radiation dose are made for the historical Carrington SPE, which can be considered an example of the most intense SPE recorded in the modern period of solar activity observations. It is shown that the neutron component of the dose during the Carrington SPE was approximately 1000 times higher than the background value from the impact of Galactic cosmic rays (GCR) on the lunar surface under quiet Sun conditions. The value of the total radiation dose on the lunar surface during the Carrington SPE was close to the limit values for humans in space.

About the authors

I. G. Mitrofanov

Space Research Institute of the Russian Academy of Sciences

Email: golovin@np.cosmos.ru
Moscow, Russia

A. S. Sanin

Space Research Institute of the Russian Academy of Sciences

Email: golovin@np.cosmos.ru
Moscow, Russia

M. L. Litvak

Space Research Institute of the Russian Academy of Sciences

Email: golovin@np.cosmos.ru
Moscow, Russia

D. V. Golovin

Space Research Institute of the Russian Academy of Sciences

Email: golovin@np.cosmos.ru
Moscow, Russia

M. V. Djachkova

Space Research Institute of the Russian Academy of Sciences

Email: golovin@np.cosmos.ru
Moscow, Russia

A. A. Anikin

Space Research Institute of the Russian Academy of Sciences

Email: golovin@np.cosmos.ru
Moscow, Russia

N. V. Lukyanov

Space Research Institute of the Russian Academy of Sciences

Author for correspondence.
Email: golovin@np.cosmos.ru
Moscow, Russia

References

  1. Drake D.M., Feldman W.C., Jakosky B.M.Martian neutron leakage spectra // J. Geophys. Res. 1988. V. 93. Iss. B6. P. 6353–6368. https://doi.org/10.1029/JB093iB06p06353
  2. Masarik J., Reedy R. Gamma ray production and transport in Mars // J. Geophys. Res.: Planets. 1996. V. 101. Iss. E8. P. 18891–18912. https://doi.org/10.1029/96JE01563
  3. Sanin A.B., Mitrofanov I.G., Litvak M.L. et al. Hydrogen distribution in the lunar polar regions // Icarus. 2017. V. 283. P. 20–30.
  4. Colaprete A., Schultz P., Heldmann J. et al.Detection of water in the LCROSS ejecta plume // Science. 2010. V. 330. P. 463–468.
  5. Lawrence D.J., Peplowski P.N., Wilson J.T. et al.Global hydrogen abundances on the lunar surface // J. Geophysical Research: Planets. 2022. V. 127. Art.ID e2022JE007197. https://doi.org/10.1029/2022JE007197
  6. Borg L.E., Connelly J.N., Boyet M. et al.Chronological evidence that the Moon is either young or did not have a global magma ocean // Nature. 2011. V. 477. P. 70-72.
  7. Usoskin I.G., Gil A., Kovaltsov G.A. et al. Heliospheric modulation of cosmic rays during the neutron monitor era: Calibration using PAMELA data for 2006–2010 / J. Geophys. Res. Space Physics. 2017. V. 122. P. 3875–3887. doi: 10.1002/2016JA023819.
  8. Kusano K., Iju T., Bamba Yu. et al. A physics-based method that can predict imminent large solar flares // Science. 2020. V. 369. P. 587–591. https://doi.org/10.1126/science.aaz2511
  9. Митрофанов И.Г., Санин А.Б., Литвак М.Л.и др. Нейтронное излучение лунной поверхности на полюсах // Косм. исслед. 2024. Т. 62. №6. С. 663–672.
  10. Townsend L.W., Zapp E.N., Stephens D.L. et al. Carrington flare of 1859 as a prototypical worst-case solar energetic particle event // IEEE Trans.Nucl. Sci. 2003. V. 5(6). |Art.ID. 2307e2309.
  11. Allison J., Amako K., Apostolakis J. et al. Recent developments in GEANT4 // Nuclear Instruments and Methods in Physics Research. 2016. V. 835. P. 186–225.
  12. Miroshnichenko L.I., Nymmik R.A. Extreme fluxes in solar energetic particle events: Methodological and physical limitations // Radiation Measurements. 2014. V. 61. P. 6–15. https://doi.org/10.1016/j.radmeas.2013.11.010
  13. Usoskin I.G., Gil A., Kovaltsov G.A. et al. Heliospheric modulation of cosmic rays during the neutron monitor era: Calibration using PAMELA data for 2006–2010 // J. Geophys. Res. Space Physics. 2017. V. 122. P. 3875–3887. doi: 10.1002/2016JA023819.
  14. Dietze G., Bartlett D., Cool D. et al.ICRP Publication 123: Assessment of Radiation Exposure of Astronauts in Space // Annals of the ICRP. 2013. V. 42(4). P. 1–339. doi: 10.1016/j.icrp.2013.05.004.
  15. Dobynde M., Guo J.Guidelines for radiation-safe human activities on the Moon // Nature. Astronomy. 2024. V. 8. P. 991–999.
  16. Limitation of Astronaut’s Exposure During Near-Earth Space Flights, Methodical Recommendations Report MR-17.01-2001 (in Russian) (Roscosmos, 2021).
  17. NASA Space Flight Human-System Standard. V. 1, Revision b: Crew health 1. 67 p. (NASA, 2022).
  18. Мокроусов М.И., Митрофанов И.Г., Аникин А.А.и др. Второй этап космического эксперимента “БТН Нейтрон” на борту российского сегмента Международнойкосмической станции: аппаратура БТН-М2 // Косм. исслед. 2022. Т. 60. №5. С. 426–436.
  19. Brehm N., Christl M., Knowles T.D.J. et al.Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE // Nature Communications. 2022. V. 13. Art.ID. 1196. https://doi.org/10.1038/s41467-022-28804-9
  20. Uusitalo J., Golubenko K., Arppe L. et al.Transient offset in 14C after the Carrington event recorded by polar tree rings // Geophysical Research Letters. 2024. V. 51. Art.ID. e2023GL106632. https://doi.org/10.1029/2023GL106632

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».