Global electron content and neutral density of the thermosphere at Starlink launches in 2019–2023
- Authors: Gulyaeva T.L.1, Lukianova R.Y.2
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
- Space Research Institute
- Issue: Vol 63, No 4 (2025)
- Pages: 349-363
- Section: Articles
- URL: https://journals.rcsi.science/0023-4206/article/view/318397
- ID: 318397
Cite item
Abstract
In order to avoid emergency situation it is necessary to take into account impact of disturbances in space environment during launch of space vehicles. This paper examines changes in the neutral density of the thermosphere (ρ) according toSwarmsatellites and global electron content (GEC) from JPL GIM-TEC maps during 130Starlinksatellite launches in 2019-2023. The variations ofρ and GEC over the 24-hour period centered at the launch time were identified and analyzed. The spatial distribution and evolution of ρ and GEC in terms of solar activity, season and level of geomagnetic activity before and after eachStarlinklaunch event were investigated. It is shown that with increasing the phaseΦof the solar cycle (SC) fromΦ=0.5 (February 2022) to a maximumΦ=1 (April 2024) of SC25, the value ofGEC andρincreaseby 2.1 and 3.5 times, respectively. During this period, 75 magnetic storms of categories NOAA G1−G4 were observed at Kp≥5.0, of which 19 storms has occurred in the interval±24 hours from the moment ofStarlinklaunch. Only in one case an emergency was observed on February 3, 2022, during the launch ofS-36, when 38 out of 49 satellites left orbit during a minor two-phase geomagnetic storm of level G1 (Kp=5.3). Comparison is made with another successful launchS-77on March 23, 2023 during an intense magnetic storm of category G3 (Kp=7.3). It is shown that at theS-77launch the neutral density ρ prevailed in the northern high latitudes, while in the case ofS-36, the thermosphere was denser near the equator. AfterS-36launch, the transition from the positive to negative perturbation of GEC has happened while a strictly negative GEC anomaly was observed in the case ofS-77. The examples considered show that the intensity of a geomagnetic storm is not the only criterion for an emergency situation. Other characteristics should be taken into account when launching spacecraft, including an increase in electron content in the ionosphere and the density of the neutral atmosphere, accompanied by increased satellites drag at low orbits.
About the authors
T. L. Gulyaeva
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Email: gulyaeva@izmiran.ru
Moscow, Russia
R. Yu. Lukianova
Space Research Institute
Author for correspondence.
Email: lukianova@cosmos.ru
Moscow, Russia
References
- Hapgood M., Liu H., Lugaz N. SpaceX — Sailing close to the space weather? // Space Weather. 2022. V. 20(3). Art.ID. e2022SW003074. https://doi.org/10.1029/2022SW003074
- Dang T., Li X., Luo B. et al.Unveiling the space weather during the Starlink satellites destruction event on 4 February 2022 // Space Weather. 2022. V. 20(8). Art.ID. e2022SW003152. https://doi.org/10.1029/2022sw003152
- Fang T.-W., Kubaryk A., Goldstein D. et al.Space weather environment during the SpaceX Starlink satellite loss in February 2022 // Space Weather. 2022. V. 20(11). Art.ID. e2022SW003193. https://doi.org/10.1029/2022sw003193
- Lin D., Wang W., Garcia-Sage K. et al. Thermospheric neutral density variation during the “SpaceX” storm: Implications from physics-based whole geospace modeling // Space Weather. 2022. V. 20(12). Art.ID. e2022SW003254. https://doi.org/10.1029/2022sw003254
- Zhang Y., Paxton L.J., Schaefer R. et al. Thermospheric conditions associated with the loss of 40 Starlink satellites. Space Weather. 2022. V. 20. Art.ID. e2022SW003168. https://doi.org/10.1029/2022SW003168
- Kataoka R., Shiota D., Fujiwara H. et al. Unexpected space weather causing the reentry of 38 Starlink satellites in February 2022 // J. Space Weather Space Climate.2022. V. 12. Art.ID. 41. https://doi.org/10.1051/swsc/2022034
- Berger T.E., Dominique M., Lucas G. et al.The thermosphere is a drag: The 2022 Starlink incident and the threat of geomagnetic storms to low Earth orbit space operations // Space Weather. 2023. V. 21(3). Art.ID. e2022SW003330. https://doi.org/10.1029/2022sw003330
- Laskar F.I., Sutton E.K., Lin D. et al. Thermospheric temperature and density variability during 3–4February 2022 minor geomagnetic storm // Space Weather. 2023. V. 21(4). Art.ID. e2022SW003349. https://doi.org/10.1029/2022sw003349
- Gulyaeva T., Lukianova R., Haralambous H.Ionosphere heterogeneities at dawn−dusk terminator related to the Starlink satellites launch disaster on 3−8 February 2022 //J. Geophysical Research: Space Physics.2023. V. 128. Art.ID. e2023JA031577. https://doi.org/10.1029/2023JA031577
- Li S., Ren Z., Yu T., Chen G. et al. The daytime variations of thermospheric temperature and neutral density over Beijing during minor geomagnetic storm on 3–4 February 2022 // Space Weather. 2024. V. 22. Art.ID. e2023SW003677. https://doi.org/10.1029/2023SW003677
- Gulyaeva T., Hernández-Pajares M., Stanislawska I. Ionospheric Weather at Two Starlink Launches during Two-Phase Geomagnetic Storms // Sensors. 2023. V. 23(15). Art.ID. 7005. https://doi.org/10.3390/s23157005
- Billett D.D., Sartipzadeh K., Ivarsen M.F. et al. The 2022 Starlink geomagnetic storms: Global thermospheric response to a high-latitude ionospheric driver // Space Weather. 2024. V. 22. Art.ID. e2023SW003748. https://doi.org/10.1029/2023SW003748
- Gulyaeva T.L., Arikan F., Hernandez-Pajares M. et al.North-south components of the annual asymmetry in the ionosphere // Radio Science. 2014. V. 49(7). P. 485–496. https://doi.org/10.1002/2014RS005401
- Gulyaeva T., Stanislawska I., Lukianova R. Arctic−Antarctic asymmetry of the ionospheric weather // Advances in Space Research. 2023. V. 72(12). P. 5428–5442. https://doi.org/10.1016/j.asr.2022.05.008
- Mannucci A.J.,Tsurutani B.Ionosphere and Thermosphere Responses to Extreme Geomagnetic Storms/Extreme Events in Geospace: Origins, Predictability, and Consequences. Ed. Natalia Buzulukova. Chapter 20. Elsevier, 2017. P. 493–513. https://doi.org/10.1016/B978-0-12-812700-1.00020-0
- Афраймович Э.Л., Астафьева Э.И., Живетьев И.В.Солнечная активность и глобальное электронное содержание // Доклады Российской академии наук. 2006. Т. 409. № 3. С. 399–402.
- Клименко М.В., Клименко В.В., Бессараб Ф.С. и др.О возможных причинах положительного возмущения глобального электронного содержания в период сложного гелио-геофизического события в сентябре 2017 года // Космические исследования. 2021. Т. 59. № 6. С. 483–488. https://doi.org/10.31857/S0023420621060042
- Friis-Christensen E., Lühr H., Knudsen D. et al.Swarm — an Earth observation mission investigating geospace // Advances in Space Research. 2008. V. 41(1). P. 210–216. https://doi.org/10.1016/j.asr.2006.10.008
- Siemes C., Teixeira da Encarnacao J., Doornbos E. et al.Swarm accelerometer data processing from raw accelerometers to thermospheric densities // Earth, Planets, Space.2016. V. 68(92). P. 1–16. https://doi.org/10.1186/s40623-016-0474-5
- den Ijssel J. van, Doornbos E., Iorfida E. et al.Thermosphere densities derived fromSwarmGPS observations // Advances in Space Research. 2020. V. 65(7). P. 1758–1771. https://doi.org/10.1016/j.asr.2020.01.004
- Clette F., Lefevre L., Chatzistergos T. et al. Recalibration of the Sunspot−N: Status Report // Solar Physics. 2023. V. 298. Art.ID. 3. https://doi.org/10.1007/s11207-023-02136-3
- Emmert J.T., Picone J.M.Climatology of globally averaged thermospheric mass density // J. Geophysical Research: Space Physics.2010. V. 115. Art.ID. A09326.http://dx.doi.org/10.1029/2010JA015298
- Gulyaeva T.L.Predicting indices of the ionosphere response to solar activity for the ascending phase of the 25th solar cycle // Advances in Space Research. 2019. V. 63. Iss. 5. P. 1588‒1595. https://doi.org/10.1016/j.asr.2018.11.002
- de Souza Franco A.M., Hajra R., Echer E. et al.Seasonal features of geomagnetic activity: a study on the solar activity dependence // Ann. Geophys. 2021. V. 39. P. 929–943. https://doi.org/10.5194/angeo-39-929-2021
- Fuller-Rowell T.J.The “thermospheric spoon”: A mechanism for the semiannual density variation // J. Geophysical Research. 1998. V. 103. P. 3951–3956. https://doi.org/10.1029/97ja03335
- Matzka J., Stolle C., Yamazaki Y. et al.The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. 2021. V. 19. Art.ID. e2020SW002641. https://doi.org/10.1029/2020SW002641
- YamazakiY.,MatzkaJ.,StolleC. et al.Geomagnetic activity index Hpo // Geophys. Res. Lett. 2022. V. 49. https://doi.org/10.1029/2022GL098860
- Sugiura M.Hourly values of equatorial Dst for the IGY // Annals Int. Geophys. Year. V. 35. Oxford: Pergamon Press, 1964.
- Лукьянова Р.Ю.Влияние продольных токов на электронную концентрацию в ионосфере: сопряженные наблюдения спутниковSwarmи радара ESR // Космические исследования.2023. Т. 61(6). С. 466–475. https://doi.org/10.31857/S0023420623600083
- Holappa L., Robinson R.M., Pulkkinen A. et al.Explicit IMF By-dependence in geomagnetic activity: Quantifying ionospheric electrodynamics // J. Geophysical Research: Space Physics. 2021. V. 126. Art.ID. e2021JA029202. https://doi.org/10.1029/2021JA029202
- Leonard J.M., Forbes J.M., Born G.H. Impact of tidal density variability on orbital and reentry predictions // Space Weather. 2012. V. 10. Art.ID. S12003. http://dx.doi.org/10.1029/2012SW000842
- Gulyaeva T.L.Interaction of global electron content with the Sun and solar wind during intense geomagnetic storms //Planetary and Space Sci.2024. V. 240. Art.ID. 105830. https://doi.org/10.1016/j.pss.2023.105830
Supplementary files
