Autonomous spacecraft control in the solar gravitational lens' focus via reinforcement learning
- Authors: Shirobokov M.G.1, Korneev K.R.1, Perepukhov D.G.1
-
Affiliations:
- Keldysh Institute of Applied Mathematics
- Issue: Vol 63, No 2 (2025)
- Pages: 204-220
- Section: Articles
- URL: https://journals.rcsi.science/0023-4206/article/view/294132
- DOI: https://doi.org/10.31857/S0023420625020072
- EDN: https://elibrary.ru/GNCBWV
- ID: 294132
Cite item
Abstract
The problem of autonomous control of the translational motion of the spacecraft in the vicinity of the focus of the gravitational lens of the Sun is formulated. The problem is solved by a reinforcement machine learning method using contemporary stochastic numerical methods. The costs of the characteristic velocity for targeting the focal line of a remote extended source, the final accuracy of targeting and the quality of the control function are investigated. The results of the study are given for various forms of state and observation: 1) position and velocity, 2) noisy position and velocity, 3) image of the Einstein ring. The efficiency of control strategies when using recurrent layers and fully connected layers with an input in the form of a measurement stack is compared. The training of control models accounting for execution errors of maneuvers is also being explored.
About the authors
M. G. Shirobokov
Keldysh Institute of Applied Mathematics
Author for correspondence.
Email: shirobokov@keldysh.ru
Russian Federation, Miusskaya Pl., 4, Moscow
K. R. Korneev
Keldysh Institute of Applied Mathematics
Email: shirobokov@keldysh.ru
Russian Federation, Miusskaya Pl., 4, Moscow
D. G. Perepukhov
Keldysh Institute of Applied Mathematics
Email: shirobokov@keldysh.ru
Russian Federation, Miusskaya Pl., 4, Moscow
References
- Brandt P.C., Provornikova E.A., Cocoros A. et al. Interstellar Probe: Humanity’s exploration of the Galaxy Begins // Acta Astronautica. 2022. V. 199. P. 364–373. https://doi.org/10.1016/j.actaastro.2022.07.011
- Einstein A. The Field Equations of Gravitation // Preussische Akademie der Wissenschaften, Sitzungsberichte, (Math. Phys.). Berlin, 1915. P. 844–847.
- Eddington A.S. Space, time and gravitation: An outline of the general relativity theory. Cambridge University Press, 1920.
- Фок В.А. Теория пространства, времени и тяготения. Москва: Физматгиз, 1955.
- Turyshev S.G., Toth V.T. Resolved imaging of exoplanets with the solar gravitational lens // Monthly Notices of the Royal Astronomical Society. 2022. V. 515. Iss. 4. P. 6122–6132. https://doi.org/10.1093/mnras/stac2130
- Turyshev S.G. Wave-theoretical description of the solar gravitational lens // Physical Review. 2017. V. 95. Iss. 8. Art. ID. 084041. https://doi.org/10.1103/PhysRevD.95.084041
- Turyshev S.G., Toth V.T. Wave-optical treatment of the shadow cast by a large gravitating sphere // Physical Review. 2018. V. 98. Iss. 10. Art. ID. 104015. https://doi.org/10.1103/PhysRevD.98.104015
- Turyshev S.G., Toth V.T. Optical properties of the solar gravitational lens in the presence of the solar corona // European Physical J. Plus. 2019. V. 134. Art. ID. 63. https://doi.org/10.1140/epjp/i2019-12426-4
- Turyshev S.G., Toth V.T. Image formation for extended sources with the solar gravitational lens // Physical Review. 2020. V. 102. Iss. 2. Art. ID. 024038. https://doi.org/10.1103/PhysRevD.102.024038
- Toth V.T., Turyshev S.G. Image recovery with the solar gravitational lens // Physical Review. 2021. V. 103. Iss. 12. Art. ID. 124038. https://doi.org/10.1103/PhysRevD.103.124038
- Willems P.A. Photometric Limits on the High Resolution Imaging of Exoplanets Using the Solar Gravity Lens // Acta Astronautica. 2018. V. 152. P. 408–414. https://doi.org/10.1016/j.actaastro.2018.08.013
- Turyshev S.G., Shao M., Alkalai L. et al. Direct Multipixel Imaging and Spectroscopy of an exoplanet with a Solar Gravity Lens Mission // Final Report. NASA Innovative Advanced Concepts (NIAC). Phase I. 2018. https://arxiv.org/abs/1802.08421
- Turyshev S.G., Shao M., Toth V.T. et al. Direct Multipixel Imaging and Spectroscopy of an Exoplanet with a Solar Gravity Lens Mission // Final Report. NASA Innovative Advanced Concepts (NIAC). Phase II. 2020. https://arxiv.org/abs/2002.11871
- Саттон Р.С., Барто Э.Г. Обучение с подкреплением. Москва: Бином. Лаборатория знаний, 2017.
- Bertsekas D.P. Reinforcement learning and optimal control. Belmont: Athena Scientific, 2019.
- Kamalapurkar R., Walters P., Rosenfeld J. et al. Reinforcement Learning for Optimal Feedback Control. A Lyapunov-Based Approach. Cham: Springer, 2018.
- Shirobokov M., Trofimov S., Ovchinnikov M. Survey of machine learning techniques in spacecraft control design // Acta Astronautica. 2021. V. 186. P. 87–97. https://doi.org/10.1016/j.actaastro.2021.05.018
- Gaudet B., Linares R., Furfaro R. Terminal adaptive guidance via reinforcement meta-learning: Applications to autonomous asteroid close-proximity operations // Acta Astronautica. 2020. V. 171. P. 1–13. https://doi.org/10.1016/j.actaastro.2020.02.036
- Gaudet B., Linares R., Furfaro R. Adaptive guidance and integrated navigation with reinforcement meta-learning // Acta Astronautica. 2020. V. 169. P. 180–190. https://doi.org/10.1016/j.actaastro.2020.01.007
- Scorsoglio A., D’Ambrosio A., Ghilardi L. et al. Image-based deep reinforcement meta-learning for autonomous lunar landing // J. Spacecraft and Rockets. 2022. V. 59. Iss. 1. P. 153–165. https://doi.org/10.2514/1.A35072
- Gaudet B., Linares R., Furfaro R. Six degree-of-freedom body-fixed hovering over unmapped asteroids via LIDAR altimetry and reinforcement meta-learning // Acta Astronautica. 2020. V. 172. P. 90–99. https://doi.org/10.1016/j.actaastro.2020.03.026
- Широбоков М.Г. Методика построения управления космическими аппаратами с использованием методов обучения с подкреплением // Косм. исслед. 2024. Т. 62. № 5. С. 498–515. https://doi.org/10.31857/S0023420624050082
- Lefor A.T., Futamase T., Akhlaghi M. A systematic review of strong gravitational lens modeling software // New Astronomy Reviews. 2013. V. 57. Iss. 1–2. P. 1–13. https://doi.org/10.1016/j.newar.2013.05.001
- Oguri M. The Mass Distribution of SDSS J1004+4112 Revisited // Public. Astronomical Society of Japan. 2010. V. 62. Iss. 4. P. 1017–1024. https://doi.org/10.1093/pasj/62.4.1017
- Silver D., Lever G., Heess N. et al. Deterministic policy gradient algorithms // Proc. Intern. Conf. Machine Learning. Beijing, China. 2014. V. 32. Iss. 1. P. 387–395. http://proceedings.mlr.press/v32/silver14.html
- Mnih V., Badia A.P., Mirza M. et al. Asynchronous Methods for Deep Reinforcement Learning // Proc. Intern. Conf. Machine Learning. New York, USA. 2016. V. 48. P. 1928–1937. https://proceedings.mlr.press/v48/mniha16.html
- Schulman J., Wolski F., Dhariwal P. et al. Proximal Policy Optimization Algorithms // arXiv preprint. 2017. Art. ID. 1707.06347. https://arxiv.org/abs/1707.06347
- Moriarty D.E., Schultz A. C., Grefenstette J.J. Evolutionary algorithms for reinforcement learning // J. Artificial Intelligence Research. 1999. V. 11. P. 241–276.
- Sehgal A., La H., Louis S. et al. Deep reinforcement learning using genetic algorithm for parameter optimization // Proc. Third IEEE International Conference on Robotic Computing (IRC). 2019. P. 596–601. https://doi.org/10.1109/IRC.2019.00121
- Hochreiter S., Schmidhuber J. Long short-term memory // Neural computation. 1997. V. 9. Iss. 8. P. 1735–1780.
- Hoeffding W. Probability inequalities for sums of bounded random variables // J. American Statistical Association. 1963. V. 58. Iss. 301. P. 13–30. https://doi.org/10.1080/01621459.1963.10500830
Supplementary files
