Features of Narrowband Stimulated Electromagnetic Emission Depending on the Effective Radiated Power of the EISCAT/Heating Facility

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Estimates of excitation thresholds and the analysis of spectral features of narrowband stimulated electromagnetic emission (NSEE) depending on the electric-field intensity of an extraordinary polarized HF pump wave have been carried out. They are based on results obtained during power stepping EISCAT/Heating experiments. The HF pump wave was radiated toward the magnetic zenith at frequency of 5.423 MHz. The effective radiated power was changed from 55 to 360 MW. NSEE was recorded in the vicinity of St. Petersburg at a distance of ~1200 km away of the EISCAT/Heating facility. Calculations of the electric field of a powerful HF radio wave near the reflection altitude taking into account the nondeviation absorption in the underlying layers were performed. The threshold (minimum) values of the electric field required for the NSEE excitation were determined.

About the authors

A. S. Kalishin

Arctic and Antarctic Research Institute, 199397, St. Petersburg, Russia

Email: askalishin@aari.ru
Россия, Санкт-Петербург

N. F. Blagoveshchenskaya

Arctic and Antarctic Research Institute, 199397, St. Petersburg, Russia

Email: askalishin@aari.ru
Россия, Санкт-Петербург

T D. Borisova

Arctic and Antarctic Research Institute, 199397, St. Petersburg, Russia

Email: askalishin@aari.ru
Россия, Санкт-Петербург

I. M. Egorov

Arctic and Antarctic Research Institute, 199397, St. Petersburg, Russia

Email: askalishin@aari.ru
Россия, Санкт-Петербург

G. A. Zagorskiy

Arctic and Antarctic Research Institute, 199397, St. Petersburg, Russia

Email: askalishin@aari.ru
Россия, Санкт-Петербург

A. S. Kovalev

Arctic and Antarctic Research Institute, 199397, St. Petersburg, Russia

Author for correspondence.
Email: askalishin@aari.ru
Россия, Санкт-Петербург

References

  1. Thidé B., Kopka H., Stubbe P. Observations of stimulated scattering of a strong high frequency radio wave in the ionosphere // Physics Review Lett. 1982. V. 49. P. 1561–1564. https://doi.org/10.1103/physrevlett.49.1561
  2. Frolov V.L., Sergeev E.N., Ermakova G.P. et al. Spectral features of stimulated electromagnetic emissions, measured in the 4.3–9.5 MHz pump wave frequency range // Geophys. Res. Lett. 2001. V. 28. P. 3103–3106.
  3. Leyser T.B. Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma // Space Science Reviews. 2001. V. 98. P. 223–328. https://doi.org/10.1023/a:1013875603938
  4. Фролов В.Л. Искусственная турбулентность среднеширотной ионосферы. H. Новгород: Изд-во ННГУ им. Н.И. Лобачевского, 2017. ISBN 978-5-91326-355-1.
  5. Bernhardt P.A., Selcher C.A., Lehmberg R.H. et al. Determination of the electron temperature in the modified ionosphere over HAARP using the HF pumped Stimulated Brillouin Scatter (SBS) emission lines // Ann. Geophys. 2009. V. 27. P. 4409–4427.
  6. Mahmoudian A., Scales W.A., Bernhardt P.A. et al. Investigation of ionospheric stimulated Brillouin scatter generated at pump frequencies near electron gyroharmonics // Radio Science. 2013. V. 48. P 685–697. https://doi.org/10.1002/2013RS005189
  7. Yellu A.D., Scales W.A., Mahmoudian A. et al. First Observations of Narrowband Stimulated Electromagnetic Emissions at the Pump Frequency Second Harmonic During Ionosphere Interaction Experiments // Geophysical Research Letters. 2018. V. 45. P. 8690–8697. https://doi.org/10.1029/2018GL078924
  8. Shukla P.K., Stenflo L. Stimulated Brillouin scattering of electromagnetic waves in magnetized plasmas // J. Plasma Physics. 2010. V. 76. P. 853–855.
  9. Samimi A., Scales W.A., Bernhardt P.A. et al. Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating: 2. Simulations // J. Geophysical Research: Space Physics. 2014. V. 119. P. 462–478. https://doi.org/10.1002/2013JA019341
  10. Fu H.Y., Jiang M.L., Wang K.N. et al. Electron temperature inversion by stimulated brillouin scattering during electron gyro-harmonic heating at EISCAT // Geophysical Research Lett. 2020. V. 47. Iss. 17. https://doi.org/10.1029/2020GL089747
  11. Kalishin A.S., Blagoveshchenskaya N.F., Borisova T.D. et al. Ion Gyro-Harmonic Structures in Stimulated Emission Excited by X-Mode High Power HF Radio Waves at EISCAT // J. Geophysical Research: Space Physics. 2021. V. 126. Art. ID. e2020JA028989. https://doi.org/10.1029/2020JA028989
  12. Kalishin A.S., Blagoveshchenskaya N.F., Borisova T.D. et al. Comparison of Spectral Features of Narrowband Stimulated Electromagnetic Emission Excited by an Extraordinary Pump Wave in the High-latitude Ionospheric F Region at Frequencies be low and above the F2 Layer X-component Critical Frequency // Russian Meteorology and Hydrology. 2022. V. 47. Iss. 12. P. 921–930. https://doi.org/10.3103/S1068373922120032
  13. Blagoveshchenskaya N.F., Borisova T.D., Kalishin A.S. et al. First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region // J. Atmospheric and Solar-Terrestrial Physics. 2017. V. 155. P. 36–49. https://doi.org/10.1016/j.jastp.2017.02.003
  14. Blagoveshchenskaya N.F., Borisova T.D., Yeoman T.K. Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: Experimental results from multi-instrument diagnostics // J. Atmospheric and Solar-Terrestrial Physics. 2015. V. 135. P. 50–63. https://doi.org/10.1016/j.jastp.2015.10.009
  15. Blagoveshchenskaya N.F., Borisova T.D., Kalishin A.S. et al. Comparison of the effects induced by the ordinary (O‑mode) and extraordinary (X-mode) polarized powerful HF radio waves in the high-latitude ionospheric F-region // Cosmic Research. 2018. V. 56. P. 11–25. https://doi.org/10.1134/S0010952518010045
  16. Rietveld M.T., Senior A., Markkanen J., Westman A. New capabilities of the upgraded EISCAT high-power HF facility // Radio Sci. 2016. V. 51. Iss. 9. P. 1533–1546. https://doi.org/10.1002/2016RS006093
  17. Rietveld M.T., Wright J.W., Zabotin N. et al. The Tromsø dynasonde // Polar Science. 2008. V. 2. P. 55–71. https://doi.org/10.1016/j.polar.2008.02.001
  18. Rishbeth H., van Eyken A.P. EISCAT – early history and the first ten years of operation // J. Atmos. Terr. Phys. 1993. V. 55. Iss. 4–5. P. 525–542.
  19. Lehtinen M.S., Huuskonen A. General incoherent scatter analysis and GUISDAP // J. Atmos. Sol. Terr. Phys. 1996. V. 58. P. 435–452.
  20. Kalishin A.S., Blagoveshchenskaya N.F., Borisova T.D. et al. Remote Diagnostics of Effects Induced by High-latitude Heating Facilities // Russian Meteorology and Hydrology. 2021. V. 46. P. 231–240. https://doi.org/10.3103/S1068373921040038
  21. Gurevich A.V. Nonlinear effects in the ionosphere // Physics-Uspekhi. 2007. V. 50. P. 1091–1121.
  22. Robinson T.R. The heating of the high latitude ionosphere by high power radio waves // Phys. Rep. 1989. V. 179. P. 79–209.
  23. Борисова Т.Д., Благовещенская Н.Ф., Калишин А.C. Особенности возбуждения искусственной ионосферной турбулентности при О- и Х-нагреве вблизи критической частоты слоя F2 // Солнечно-земная физика. 2023. Т. 9. № 1. С. 3–18. https://doi.org/10.12737/szf-81202201

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (647KB)
4.

Download (322KB)
5.

Download (76KB)
6.

Download (1MB)
7.

Download (71KB)
8.

Download (1MB)

Copyright (c) 2023 А.С. Калишин, Н.Ф. Благовещенская, Т.Д. Борисова, И.М. Егоров, Г.А. Загорский, А.С. Ковалев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies