Estimation of the Electron Density in the Near 3–4 RE Magnetosphere Based on the Measurement of the Interball-2 Satellite Potential

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method is proposed for determining the electron density in rarefied plasma, based on simultaneous measurements of the Interball-2 satellite potential using IESP-2 (electric field instrument) and KM-7 (electron temperature sensor) probe devices. This makes it possible to estimate the photoelectron current density based on a procedure proposed earlier by the authors of this study. The electron concentration was determined only for the positive potential of the spacecraft. The balance equations for the satellite and the probe between the currents of the surrounding plasma electrons and photoelectrons emitted by the illuminated surface were compiled. In the magnetosphere, to bring the probe potential to the potential of the surrounding plasma, a bias current is directed into the probe, which was taken into account in the current balance equation for the probe. The electron energy used in the calculations was kTe = 1 eV. We analyzed data from ~350 orbits in the auroral region of the magnetosphere at altitudes of 2–3 RE from October 1996 to March 1998 during the period of low solar activity at the beginning of the 23rd cycle. Examples of the calculated electron density are given, which is in the range of 1–30 cm–3.

About the authors

N. F. Smirnova

Space Research Institute, Russian Academy of Sciences, 117997, Moscow, Russia

Email: nsmirnova@romance.iki.rssi.ru
Россия, Москва

G. Stanev

Space Research and Technology Institute, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria

Author for correspondence.
Email: gstanev@space.bas.bg
Болгария, София

References

  1. Pedersen A. Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements // Annales Geophysicae. 1995. V. 13. P. 118–129.
  2. Escoubet C.P., Pedersen A., Schmidt R. et al. Density in the magnetosphere inferred from ISEE-1 spacecraft potential // J. Geophysical Research. 1997. V. 102. Iss. A8. P. 17595–17609. https://doi.org/10.1029/97JA00290
  3. Smirnova N.F., Stanev G. Determination of the photoelectron current density based on comparison between IESP-2 and KM-7 probe measurements of the Interball-2 satellite // Geomagnetism and Aeronomy. 2009. V. 49. Iss. 8. P. 1204–1207.
  4. Bodnar L., Bouabdellah A., Perraut S. et al. INTERBALL (revised technical characteristics of the IESP experiment). Unpublished manuscript. 2001.
  5. Perraut S., Roux A., Darrouzet F. et al. ULF wave measurements onboard the Interball Auroral probe // Annales Geophysicae. 1998. V. 16. Iss. 9. P. 1105–1116.
  6. Stanev G.A., Petrunova M.N., Teodosiev D.K. et al. An Instrument for DC and AC electric and magnetic fields measurements aboard INTERCOSMOS Bulgaria 1300 Satellite // Advances in Space Research. 1983. V. 2. P. 43–47.
  7. Теодосиев Д., Станев Г., Галев Г. и др. Сферические зонды для измерения электрических полей на спутнике Интербол-2 в приборе ИЭСП-2М // Космич. исслед. 2000. Т. 38. № 6. С. 614–618 (Cosmic Research. P. 574–578).
  8. Afonin V., Smilauer J. Experiment KM-7 thermal plasma measurements in plasmasphere. INTERBALL: mission and payload. CNES-IKI-RSA. Toulouse, 1995. P. 309–312.
  9. Kremnev R.S., Smirnov A.I., Gorkin S.S. Brief description of PROGNOZ-M2 spacecraft in the INTERBALL Project. INTERBALL: mission and payload. CNES-IKI-RSA. Toulouse. 1995. P. 76–80.
  10. Безруких В.В., Бородкова Н.Л., Климов С.И. и др. Вариации потенциала космического аппарата на высокоэллиптичных орбитах // Космонавтика и ракетостроение. 2003. Т. 30. № 1. С. 109–115.
  11. Торкар К., Джезенски Г., Веселов М.В. и др. Измерение электрического потенциала спутника Интербол-2 относительно плазмы и основанное на нем определение концентрации электронов // Космич. исслед. 1999. Т. 37. № 6. С. 644–653 (Cosmic Research. 1999. V. 37. № 6. P. 606–614).
  12. Feuerbacher B., Fitton B. Experimental investigation of photoemission from satellite surface materials // J. Applied Physics. 1972. V. 43. Iss. 4. P. 1563–1571. https://doi.org/10.1063/1.1661362
  13. Grard J. Properties of the satellite photoelectron sheath derived from photoemission laboratory measurements // J. Geophysical Research. 1973. V. 78. Iss. 16. P. 2885–2906. https://doi.org/10.1029/JA078i016p02885
  14. Pedersen A., Cattell C.A., Flthammar C.-G. et al. Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE satellites // Space Science Reviews. 1984. V. 37. P. 269–312.
  15. Schmidt R., Pedersen A. Long-term behavior of photo-electron emission from the electric field double probe sensors on GEOS-2 // Planetary and Space Science. 1987. V. 35. Iss. 1. P. 61–70. https://doi.org/10.1016/0032-0633(87)90145-0
  16. Pedersen A., Lybekk B., Andre M. et al. Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions // J. Geophysical Research. 2008. V. 113. Art. № A07S33. https://doi.org/10.1029/2007JA012636
  17. Смирнова Н.Ф., Станев Г., Мулярчик Т.М. Исследование фотоэмиссии на спутнике ИНТЕРБОЛ-2 в магнитосфере при низкой солнечной активности // Физика Солнца и околоземного космического пространства: тр. Всероссийской конф. по солнечно-земной физике, посвященной 100-летию со дня рождения чл.-корр. РАН В.Е. Степанова. Иркутск, 16–21 сент. 2013. Иркутск: изд-во ИСЗФ СО РАН, 2013. С. 203–205.
  18. Kletzing C.A., Mozer F.S., Torbert R.B. Electron temperature and density at high latitude // J. Geophysical Research. 1998. V. 103. Iss. A7. P. 14837–14845.
  19. Lybekk B., Pedersen A., Haaland S. et al. Solar cycle variations of the Cluster spacecraft potential and its use for electron density estimations // J. Geophysical Research. 2012. V. 117. Art. № A01217. https://doi.org/10.1029/2011JA016969.8
  20. Химмельблау Д. Эффективные методы одномерного поиска // Прикладное нелинейное программирование. М.: Мир, 1975. С. 50–58.
  21. Mozer F.S., Cattell C.A., Temerin M. et al. The dc and ac electric field, plasma density, plasma temperature, and field-aligned current experiments on the S3-3 satellite // J. Geophysical Research. 1979. V. 84. Iss. A10. P. 5875–5874. https://doi.org/10.1029/JA084iA10p05875

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (88KB)
3.

Download (296KB)
4.

Download (100KB)
5.

Download (919KB)
6.

Download (199KB)
7.

Download (317KB)
8.

Download (319KB)
9.

Download (308KB)

Copyright (c) 2023 Н.Ф. Смирнова, Г. Станев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».