Переохлаждение испаряющихся капель воды на супергидрофобных поверхностях при низких температурах
- Авторы: Емельяненко К.А.1, Емельяненко А.М.1, Бойнович Л.Б.1
-
Учреждения:
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Выпуск: Том 87, № 4 (2025)
- Страницы: 320-331
- Раздел: Статьи
- Статья получена: 06.10.2025
- Статья опубликована: 15.08.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/318392
- DOI: https://doi.org/10.7868/S3034543X25040052
- EDN: https://elibrary.ru/npdcxa
- ID: 318392
Цитировать
Аннотация
Ключевые слова
Об авторах
К. А. Емельяненко
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Email: emelyanenko.kirill@gmail.com
Ленинский пр-т, 31, корп. 4, Москва, 119071 Россия
А. М. Емельяненко
Институт физической химии и электрохимии им. А.Н. Фрумкина РАНЛенинский пр-т, 31, корп. 4, Москва, 119071 Россия
Л. Б. Бойнович
Институт физической химии и электрохимии им. А.Н. Фрумкина РАНЛенинский пр-т, 31, корп. 4, Москва, 119071 Россия
Список литературы
- Schofield F.G.H., Wilson S.K., Pritchard D., Sefiane K. The lifetimes of evaporating sessile droplets are significantly extended by strong thermal effects // J. Fluid Mech. 2018. V. 851. P. 231–244. https://doi.org/10.1017/jfm.2018.496
- Nguyen T.A.H., Biggs S.R., Nguyen A.V. Analytical model for diffusive evaporation of sessile droplets coupled with interfacial cooling effect // Langmuir. 2018. V. 34. № 23. P. 6955–6962. https://doi.org/10.1021/acs.langmuir.7b03862
- Misyura S.Y., Kuznetsov G.V., Volkov R.S., Morozov V.S. Droplet evaporation on a structured surface: The role of near wall vortexes in heat and mass transfer // Int. J. Heat Mass Transfer. 2020. V. 148. P. 119126. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119126
- Gibbons M.J., Di Marco P., Robinson A.J. Local heat transfer to an evaporating superhydrophobic droplet // Int. J. Heat Mass Transfer. 2018. V. 121. P. 641–652. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.007
- Boinovich L.B., Emelyanenko A.M., Emelyanenko K.A., Modin E.B. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings // ACS Nano. 2019. V. 13. № 4. P. 4335–4346. https://doi.org/10.1021/acsnano.8b09549
- Yamada Y., Isobe K., Horibe A. Analysis of evaporation of droplet pairs by a quasi-steady-state diffusion model coupled with the evaporative cooling effect // Langmuir. 2023. V. 39. № 44. P. 15587–15596. https://doi.org/10.1021/acs.langmuir.3c01893
- Ni Q., Lu W., Liu B., He J., Ling X. New insights into intermittent spray cooling for high-power electronics applications // Appl. Therm. Eng. 2025. V. 261. P. 125148. https://doi.org/10.1016/j.applthermaleng.2024.125148
- Navaei I., Rajabi Zargarabadi M., Rashidi S. The effects of water spray characteristics on the performance of a photovoltaic panel // J. Therm. Anal. Calorim. 2024. V. 149. P. 14373–14387. https://doi.org/10.1007/s10973-024-13761-w
- Chulkova E.V., Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. Elimination of wetting study flaws in unsaturated vapors based on Laplace fit parameters // Surf. Innov. 2022. V. 10. № 1. P. 21–24. https://doi.org/10.1680/jsuin.21.00012
- Fuchs N.A. Evaporation and droplet growth in gaseous media. Pergamon Press, London, 1959.
- Boinovich L.B., Emelyanenko A.M. Recent progress in understanding the anti-icing behavior of materials // Adv. Colloid Interface Sci. 2024. V. 323. P. 103057. https://doi.org/10.1016/j.cis.2023.103057
- Jung S., Tiwari M.K., Doan N.V., Poulikakos D. Mechanism of supercooled droplet freezing on surfaces // Nat. Commun. 2012. V. 3. P. 615. https://doi.org/10.1038/ncomms1630
- Bhardwaj R. Analysis of an evaporating sessile droplet on a non-wetted surface // Colloid Interface Sci. Commun. 2018. V. 24. P. 49–53. https://doi.org/10.1016/j.colcom.2018.02.004
- Albernaz D.L., Amberg G., Do-Quang M. Simulation of a suspended droplet under evaporation with Marangoni effects // Int. J. Heat Mass Transf. 2016. V. 97. P. 853–860. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.073
- Nagornov O.V., Starostin N.V. Influence of substrate properties on evaporation of the sessile drop. In: Mastorakis, N., Yau, J. D., Sokolov, V. et al. (Eds.). Advances in Engineering Mechanics and Materials. University Press: Shortlands, Hammersmith, London, UK, 2014. P. 98–100. http://universitypress.org.uk/library/2014/santorini/bypaper/mechanics/mechanics-15.pdf (accessed on August 25, 2021).
- Dunn G.J., Wilson S.K., Duffy B.R., David S., Sefiane K. The strong influence of substrate conductivity on droplet evaporation // J. Fluid Mech. 2009. V. 623. P. 329–351. https://doi.org/10.1017/S0022112008005004
- Стерлягов А.Н., Низовцев М.И. Экспериментальное исследование испарения капель воды и наножидкости на поверхности материалов с разной теплопроводностью // Коллоидн. журн. 2023. Т. 85. № 1. С. 85–92. https://doi.org/10.31857/S0023291222600511
- McHale G., Aqil S., Shirtcliffe N.J., Newton M.I., Erbil H.Y. Analysis of droplet evaporation on a superhydrophobic surface // Langmuir. 2005. V. 21. № 24. P. 11053–11060. https://doi.org/10.1021/la0518795
- Kim J.Y., Hwang I.G., Weon B.M. Evaporation of inclined water droplets // Sci. Rep. 2017. V. 7. P. 42848. https://doi.org/10.1038/srep42848
- Stauber J.M., Wilson S.K., Duffy B.R., Sefiane K. Evaporation of droplets on strongly hydrophobic substrates // Langmuir. 2015. V. 31. № 12. P. 3653–3660. https://doi.org/10.1021/acs.langmuir.5b00286
- Picknett R.G., Bexon R. The evaporation of sessile or pendant drops in still air // J. Colloid Interface Sci. 1977. V. 61. № 2. P. 336–350. https://doi.org/10.1016/0021-9797(77)90396-4
- Li G., Flores S.M., Vavilala C., Schmittel M., Graf K. Evaporation dynamics of microdroplets on self-assembled monolayers of dialkyl disulfides // Langmuir. 2009. V. 25. № 23. P. 13438–13447. https://doi.org/10.1021/la901422v
- Dash S., Garimella S.V. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis // Langmuir. 2013. V. 29. № 34. P. 10785–10795. https://doi.org/10.1021/la402784c
- Sáenz P.J., Wray A.W., Che Z., Matar O.K., Valluri P., Kim J., Sefiane K. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation // Nat. Commun. 2017. V. 8. P. 14783. https://doi.org/10.1038/ncomms14783
- Mehr S.M., Businaro L., Habibi M., Moradi A.R. Collective behavior of evaporating droplets on superhydrophobic surfaces // AIChE J. 2020. V. 66. № 8. P. e16284. https://doi.org/10.1002/aic.16284
- Левашов В.Ю., Крюков А.П., Шишкова И.Н. Влияние гомогенной нуклеации на интенсивность процессов испарения/конденсации // Коллоидн. журн. 2024. Т. 86. № 2. С. 218–226. https://doi.org/10.31857/S0023291224020061
- Чан К.Т., Дмитриев А.С., Макаров П.Г., Михайлова И.А. Экспериментальное исследование процесса испарения капель наножидкостей на подложке под действием солнечного излучения // Коллоидн. журн. 2023. Т. 85. № 6. С. 837–848. https://doi.org/10.31857/S0023291223600761
- Schatz M.F., Neitzel G.P. Experiments on thermocapillary instabilities // Annu. Rev. Fluid Mech. 2001. V. 33. P. 93–127. https://doi.org/10.1146/annurev.fluid.33.1.93
- Bouchenna C., Saada M.A., Chikh S., Tadrist L. Investigation of thermo-capillary flow inside an evaporating pinned water droplet // Interfacial Phenomena and Heat Transfer. 2015. V. 3. № 2. P. 185–201. https://doi.org/10.1615/InterfacPhenomHeatTransfer.2015013344
- Xu X., Luo J. Marangoni flow in an evaporating water droplet // Appl. Phys. Lett. 2007. V. 91. № 12. P. 124102. https://doi.org/10.1063/1.2789402
- Larson R.G. Transport and deposition patterns in drying sessile droplets // AIChE J. 2014. V. 60. № 5. P. 1538−1571. https://doi.org/10.1002/aic.14338
- Josyula T., Wang Z., Askounis A., Orejon D., Harish S., Takata Y., Mahapatra P.S., Pattamatta A. Evaporation kinetics of pure water drops: Thermal patterns, Marangoni flow, and interfacial temperature difference // Phys. Rev. E. 2018. V. 98. P. 052804. https://doi.org/10.1103/PhysRevE.98.052804
- Boinovich L.B., Emelyanenko A.M. Hydrophobic materials and coatings: Principles of design, properties and applications // Russ. Chem. Rev. 2008. V. 77. № 7. P. 619–638. https://doi.org/10.1070/RC2008v077n07ABEH003775
- Popov Y.O. Evaporative deposition patterns: Spatial dimensions of the deposit. Phys. Rev. E. 2005. V. 71. P. 036313. https://doi.org/10.1103/PhysRevE.71.036313
- Sataeva N.E., Boinovich L.B., Emelyanenko K.A., Domantovsky A.G., Emelyanenko A.M. Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors // Surf. Coat. Technol. 2020. V. 397. P. 125993. https://doi.org/10.1016/j.surfcoat.2020.125993
- Emelyanenko A.M., Boinovich L.B. The role of discretization at the video image processing of sessile and pendant drop profiles // Colloids Surf. A. 2001. V. 189. № 1–3. P. 197–202. https://doi.org/10.1016/S0927-7757(01)00585-4
- Vinš V., Fransen M., Hykl J., Hrubý J. Surface tension of supercooled water determined by using a counterpressure capillary rise method // J. Phys. Chem. B. 2015. V. 119. № 17. P. 5567–5575. https://doi.org/10.1021/acs.jpcb.5b00545
- Asada S., Sotani T., Arabas J., Kubota H., Matsuo S., Tanaka Y. Density of water at subzero temperature under high pressure: Measurements and correlation // J. Phys. Cond. Mat. 2002. V. 14. P. 11447–11452. https://doi.org/10.1088/0953-8984/14/44/498
- Гурвич Л.В., Вейц И.В. и др. Термодинамические свойства индивидуальных веществ. Справочное издание в 4-х томах. Отв. ред. Глушко В.П. Москва: Наука. 1978.
- Schutzius T.M., Jung S., Maitra T., Eberle P., Antonini C., Stamatopoulos C., Poulikakos D. Physics of icing and rational design of surfaces with extraordinary icephobicity // Langmuir. 2015. V. 31. № 17. P. 4807–4821. https://doi.org/10.1021/la502586a
- Boinovich L.B., Emelyanenko A.M. Anti-icing potential of superhydrophobic coatings // Mendeleev Commun. 2013. V. 23. № 1. P. 3–10. https://doi.org/10.1016/j.mencom.2013.01.002
- Heydari G., Thormann E., Jarn M., Tyrode E., Claesson P.M. Hydrophobic surfaces: Topography effects on wetting by supercooled water and freezing delay // J. Phys. Chem. C. 2013. V. 117. № 42. P. 21752–21762. https://doi.org/10.1021/jp404396m
- Emelyanenko A.M., Boinovich L.B., Bezdomnikov A.A., Chulkova E.V., Emelyanenko K.A. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions // ACS Appl. Mater. Interfaces. 2017. V. 9. № 28. P. 24210–24219. https://doi.org/10.1021/acsami.7b05549
- Boinovich L.B., Emelyanenko A.M., Korolev V.V., Pashinin A.S. Effect of wettability on sessile drop freezing. When the superhydrophobicity stimulates extreme freezing delay // Langmuir. 2014. V. 30. № 6. P. 1659–1668. https://doi.org/10.1021/la403796g
Дополнительные файлы
