Supercooling of evaporating water droplets on superhydrophobic surfaces at low temperatures
- Authors: Emelyanenko K.A.1, Emelyanenko A.M.1, Boinovich L.B.1
-
Affiliations:
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Issue: Vol 87, No 4 (2025)
- Pages: 320-331
- Section: Articles
- Submitted: 06.10.2025
- Published: 15.08.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/318392
- DOI: https://doi.org/10.7868/S3034543X25040052
- EDN: https://elibrary.ru/npdcxa
- ID: 318392
Cite item
Abstract
About the authors
K. A. Emelyanenko
Frumkin Institute of Physical Chemistry and Electrochemistry
Email: emelyanenko.kirill@gmail.com
Leningrad Avenue, 31, bld. 4, Moscow, 119071 Russia
A. M. Emelyanenko
Frumkin Institute of Physical Chemistry and ElectrochemistryLeningrad Avenue, 31, bld. 4, Moscow, 119071 Russia
L. B. Boinovich
Frumkin Institute of Physical Chemistry and ElectrochemistryLeningrad Avenue, 31, bld. 4, Moscow, 119071 Russia
References
- Schofield F.G.H., Wilson S.K., Pritchard D., Sefiane K. The lifetimes of evaporating sessile droplets are significantly extended by strong thermal effects // J. Fluid Mech. 2018. V. 851. P. 231–244. https://doi.org/10.1017/jfm.2018.496
- Nguyen T.A.H., Biggs S.R., Nguyen A.V. Analytical model for diffusive evaporation of sessile droplets coupled with interfacial cooling effect // Langmuir. 2018. V. 34. № 23. P. 6955–6962. https://doi.org/10.1021/acs.langmuir.7b03862
- Misyura S.Y., Kuznetsov G.V., Volkov R.S., Morozov V.S. Droplet evaporation on a structured surface: The role of near wall vortexes in heat and mass transfer // Int. J. Heat Mass Transfer. 2020. V. 148. P. 119126. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119126
- Gibbons M.J., Di Marco P., Robinson A.J. Local heat transfer to an evaporating superhydrophobic droplet // Int. J. Heat Mass Transfer. 2018. V. 121. P. 641–652. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.007
- Boinovich L.B., Emelyanenko A.M., Emelyanenko K.A., Modin E.B. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings // ACS Nano. 2019. V. 13. № 4. P. 4335–4346. https://doi.org/10.1021/acsnano.8b09549
- Yamada Y., Isobe K., Horibe A. Analysis of evaporation of droplet pairs by a quasi-steady-state diffusion model coupled with the evaporative cooling effect // Langmuir. 2023. V. 39. № 44. P. 15587–15596. https://doi.org/10.1021/acs.langmuir.3c01893
- Ni Q., Lu W., Liu B., He J., Ling X. New insights into intermittent spray cooling for high-power electronics applications // Appl. Therm. Eng. 2025. V. 261. P. 125148. https://doi.org/10.1016/j.applthermaleng.2024.125148
- Navaei I., Rajabi Zargarabadi M., Rashidi S. The effects of water spray characteristics on the performance of a photovoltaic panel // J. Therm. Anal. Calorim. 2024. V. 149. P. 14373–14387. https://doi.org/10.1007/s10973-024-13761-w
- Chulkova E.V., Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. Elimination of wetting study flaws in unsaturated vapors based on Laplace fit parameters // Surf. Innov. 2022. V. 10. № 1. P. 21–24. https://doi.org/10.1680/jsuin.21.00012
- Fuchs N.A. Evaporation and droplet growth in gaseous media. Pergamon Press, London, 1959.
- Boinovich L.B., Emelyanenko A.M. Recent progress in understanding the anti-icing behavior of materials // Adv. Colloid Interface Sci. 2024. V. 323. P. 103057. https://doi.org/10.1016/j.cis.2023.103057
- Jung S., Tiwari M.K., Doan N.V., Poulikakos D. Mechanism of supercooled droplet freezing on surfaces // Nat. Commun. 2012. V. 3. P. 615. https://doi.org/10.1038/ncomms1630
- Bhardwaj R. Analysis of an evaporating sessile droplet on a non-wetted surface // Colloid Interface Sci. Commun. 2018. V. 24. P. 49–53. https://doi.org/10.1016/j.colcom.2018.02.004
- Albernaz D.L., Amberg G., Do-Quang M. Simulation of a suspended droplet under evaporation with Marangoni effects // Int. J. Heat Mass Transf. 2016. V. 97. P. 853–860. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.073
- Nagornov O.V., Starostin N.V. Influence of substrate properties on evaporation of the sessile drop. In: Mastorakis, N., Yau, J. D., Sokolov, V. et al. (Eds.). Advances in Engineering Mechanics and Materials. University Press: Shortlands, Hammersmith, London, UK, 2014. P. 98–100. http://universitypress.org.uk/library/2014/santorini/bypaper/mechanics/mechanics-15.pdf (accessed on August 25, 2021).
- Dunn G.J., Wilson S.K., Duffy B.R., David S., Sefiane K. The strong influence of substrate conductivity on droplet evaporation // J. Fluid Mech. 2009. V. 623. P. 329–351. https://doi.org/10.1017/S0022112008005004
- Стерлягов А.Н., Низовцев М.И. Экспериментальное исследование испарения капель воды и наножидкости на поверхности материалов с разной теплопроводностью // Коллоидн. журн. 2023. Т. 85. № 1. С. 85–92. https://doi.org/10.31857/S0023291222600511
- McHale G., Aqil S., Shirtcliffe N.J., Newton M.I., Erbil H.Y. Analysis of droplet evaporation on a superhydrophobic surface // Langmuir. 2005. V. 21. № 24. P. 11053–11060. https://doi.org/10.1021/la0518795
- Kim J.Y., Hwang I.G., Weon B.M. Evaporation of inclined water droplets // Sci. Rep. 2017. V. 7. P. 42848. https://doi.org/10.1038/srep42848
- Stauber J.M., Wilson S.K., Duffy B.R., Sefiane K. Evaporation of droplets on strongly hydrophobic substrates // Langmuir. 2015. V. 31. № 12. P. 3653–3660. https://doi.org/10.1021/acs.langmuir.5b00286
- Picknett R.G., Bexon R. The evaporation of sessile or pendant drops in still air // J. Colloid Interface Sci. 1977. V. 61. № 2. P. 336–350. https://doi.org/10.1016/0021-9797(77)90396-4
- Li G., Flores S.M., Vavilala C., Schmittel M., Graf K. Evaporation dynamics of microdroplets on self-assembled monolayers of dialkyl disulfides // Langmuir. 2009. V. 25. № 23. P. 13438–13447. https://doi.org/10.1021/la901422v
- Dash S., Garimella S.V. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis // Langmuir. 2013. V. 29. № 34. P. 10785–10795. https://doi.org/10.1021/la402784c
- Sáenz P.J., Wray A.W., Che Z., Matar O.K., Valluri P., Kim J., Sefiane K. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation // Nat. Commun. 2017. V. 8. P. 14783. https://doi.org/10.1038/ncomms14783
- Mehr S.M., Businaro L., Habibi M., Moradi A.R. Collective behavior of evaporating droplets on superhydrophobic surfaces // AIChE J. 2020. V. 66. № 8. P. e16284. https://doi.org/10.1002/aic.16284
- Левашов В.Ю., Крюков А.П., Шишкова И.Н. Влияние гомогенной нуклеации на интенсивность процессов испарения/конденсации // Коллоидн. журн. 2024. Т. 86. № 2. С. 218–226. https://doi.org/10.31857/S0023291224020061
- Чан К.Т., Дмитриев А.С., Макаров П.Г., Михайлова И.А. Экспериментальное исследование процесса испарения капель наножидкостей на подложке под действием солнечного излучения // Коллоидн. журн. 2023. Т. 85. № 6. С. 837–848. https://doi.org/10.31857/S0023291223600761
- Schatz M.F., Neitzel G.P. Experiments on thermocapillary instabilities // Annu. Rev. Fluid Mech. 2001. V. 33. P. 93–127. https://doi.org/10.1146/annurev.fluid.33.1.93
- Bouchenna C., Saada M.A., Chikh S., Tadrist L. Investigation of thermo-capillary flow inside an evaporating pinned water droplet // Interfacial Phenomena and Heat Transfer. 2015. V. 3. № 2. P. 185–201. https://doi.org/10.1615/InterfacPhenomHeatTransfer.2015013344
- Xu X., Luo J. Marangoni flow in an evaporating water droplet // Appl. Phys. Lett. 2007. V. 91. № 12. P. 124102. https://doi.org/10.1063/1.2789402
- Larson R.G. Transport and deposition patterns in drying sessile droplets // AIChE J. 2014. V. 60. № 5. P. 1538−1571. https://doi.org/10.1002/aic.14338
- Josyula T., Wang Z., Askounis A., Orejon D., Harish S., Takata Y., Mahapatra P.S., Pattamatta A. Evaporation kinetics of pure water drops: Thermal patterns, Marangoni flow, and interfacial temperature difference // Phys. Rev. E. 2018. V. 98. P. 052804. https://doi.org/10.1103/PhysRevE.98.052804
- Boinovich L.B., Emelyanenko A.M. Hydrophobic materials and coatings: Principles of design, properties and applications // Russ. Chem. Rev. 2008. V. 77. № 7. P. 619–638. https://doi.org/10.1070/RC2008v077n07ABEH003775
- Popov Y.O. Evaporative deposition patterns: Spatial dimensions of the deposit. Phys. Rev. E. 2005. V. 71. P. 036313. https://doi.org/10.1103/PhysRevE.71.036313
- Sataeva N.E., Boinovich L.B., Emelyanenko K.A., Domantovsky A.G., Emelyanenko A.M. Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors // Surf. Coat. Technol. 2020. V. 397. P. 125993. https://doi.org/10.1016/j.surfcoat.2020.125993
- Emelyanenko A.M., Boinovich L.B. The role of discretization at the video image processing of sessile and pendant drop profiles // Colloids Surf. A. 2001. V. 189. № 1–3. P. 197–202. https://doi.org/10.1016/S0927-7757(01)00585-4
- Vinš V., Fransen M., Hykl J., Hrubý J. Surface tension of supercooled water determined by using a counterpressure capillary rise method // J. Phys. Chem. B. 2015. V. 119. № 17. P. 5567–5575. https://doi.org/10.1021/acs.jpcb.5b00545
- Asada S., Sotani T., Arabas J., Kubota H., Matsuo S., Tanaka Y. Density of water at subzero temperature under high pressure: Measurements and correlation // J. Phys. Cond. Mat. 2002. V. 14. P. 11447–11452. https://doi.org/10.1088/0953-8984/14/44/498
- Гурвич Л.В., Вейц И.В. и др. Термодинамические свойства индивидуальных веществ. Справочное издание в 4-х томах. Отв. ред. Глушко В.П. Москва: Наука. 1978.
- Schutzius T.M., Jung S., Maitra T., Eberle P., Antonini C., Stamatopoulos C., Poulikakos D. Physics of icing and rational design of surfaces with extraordinary icephobicity // Langmuir. 2015. V. 31. № 17. P. 4807–4821. https://doi.org/10.1021/la502586a
- Boinovich L.B., Emelyanenko A.M. Anti-icing potential of superhydrophobic coatings // Mendeleev Commun. 2013. V. 23. № 1. P. 3–10. https://doi.org/10.1016/j.mencom.2013.01.002
- Heydari G., Thormann E., Jarn M., Tyrode E., Claesson P.M. Hydrophobic surfaces: Topography effects on wetting by supercooled water and freezing delay // J. Phys. Chem. C. 2013. V. 117. № 42. P. 21752–21762. https://doi.org/10.1021/jp404396m
- Emelyanenko A.M., Boinovich L.B., Bezdomnikov A.A., Chulkova E.V., Emelyanenko K.A. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions // ACS Appl. Mater. Interfaces. 2017. V. 9. № 28. P. 24210–24219. https://doi.org/10.1021/acsami.7b05549
- Boinovich L.B., Emelyanenko A.M., Korolev V.V., Pashinin A.S. Effect of wettability on sessile drop freezing. When the superhydrophobicity stimulates extreme freezing delay // Langmuir. 2014. V. 30. № 6. P. 1659–1668. https://doi.org/10.1021/la403796g
Supplementary files
