Новые полифункциональные биамфифильные ПАВ на основе алкилметилморфолиния и додецилсульфат-аниона

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Синтезированы новые биамфифильные поверхностно-активные вещества (БПАВ) на основе катиона алкилметилморфолиния и додецилсульфат-аниона (Мор-n(ДС), n = 4, 6, 8, 10). С привлечением методов ИК-спектроскопии, спектроскопии ЯМР 1Н, масс-спектрометрии, элементного анализа охарактеризована структура биамфифилов. Методами тензиометрии, кондуктометрии, флуоресцентной спектроскопии (с использованием зонда пирена), динамического и электрофоретического рассеяния света проведена оценка агрегационного поведения биамфифилов в водных растворах. Показано, что увеличение длины углеводородного радикала на два углеродных атома у амфифильного катиона приводит к увеличению поверхностной активности ПАВ ~ на 5 единиц и к снижению порога агрегации систем в 1.5–2 раза. Установлено, что происходит формирование агрегатов с гидродинамическим диаметром 20–120 нм в зависимости от длины радикала у катиона алкилметилморфолиния и от концентрации БПАВ. Дзета-потенциал систем находится в диапазоне от –25 до –100 мВ и снижается с увеличением концентрации биамфифилов. Методом спектрофотомерии показана значительная солюбилизационная способность биамфифилов по отношению к гидрофобному красителю Оранж ОТ. Полученные соединения могут представлять интерес для биомедицинского применения и других высокотехнологичных направлений.

Полный текст

Доступ закрыт

Об авторах

Д. М. Кузнецов

Институт органической и физической химии им. А. Е. Арбузова ФИЦ Казанский научный центр РАН

Автор, ответственный за переписку.
Email: kuznetsov_denis91@mail.ru
Россия, 420088, Казань, ул. Акад. Арбузова, 8

Д. А. Кузнецова

Институт органической и физической химии им. А. Е. Арбузова ФИЦ Казанский научный центр РАН

Email: kuznetsov_denis91@mail.ru
Россия, 420088, Казань, ул. Акад. Арбузова, 8

Ф. Г. Валеева

Институт органической и физической химии им. А. Е. Арбузова ФИЦ Казанский научный центр РАН

Email: kuznetsov_denis91@mail.ru
Россия, 420088, Казань, ул. Акад. Арбузова, 8

Л. Я. Захарова

Институт органической и физической химии им. А. Е. Арбузова ФИЦ Казанский научный центр РАН

Email: kuznetsov_denis91@mail.ru
Россия, 420088, Казань, ул. Акад. Арбузова, 8

Список литературы

  1. Котенко А.А., Хилько С.Л. Поверхностные свойства растворов дикатионных имидазолиевых ПАВ с короткими мостиковыми фрагментами // Коллоид. журн. 2021. Т. 83. № 2. С. 179–186. https://doi.org/10.31857/S0023291221020051
  2. Дементьева О.В. Мезопористые частицы-контейнеры из кремнезема: новые подходы и новые возможности // Коллоид. журн. 2020. Т. 82. № 5. С. 523–547. https://doi.org/10.31857/S0023291220050031
  3. Massarweh O., Abushaikha Ah.S. The use of surfactants in enhanced oil recovery: A review of recent advances // Energy Reports. 2020. V. 6. P. 3150–3178. https://doi.org/10.1016/j.egyr.2020.11.009
  4. Johnson P., Trybala A., Starov V., Pinfield V.J. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants // Advances in Colloid and Interface Science. 2021. V. 288. P. 102340. https://doi.org/10.1016/j.cis.2020.102340
  5. Kuznetsova D.A., Kuznetsov D.M., Vasileva L.A., Amerhanova S.K., Valeeva D.N., Salakhieva D.V., Nikolaeva V.A., Nizameev I.R., Islamov D.R., Usachev K.S., Voloshina A.D., Zakharova L. Ya. Complexation of oligo- and polynucleotides with methoxyphenyl-functionalized imidazolium surfactants // Pharmaceutics. 2022. V. 14. № 12. P. 2685. https://doi.org/10.3390/pharmaceutics14122685
  6. Дементьева О.В., Наумова К.А., Шишмакова Е.М., Сенчихин И.Н., Жиглецова С.К., Клыкова М.В., Дунайцев И.А., Козлов Д.А., Рудой В.М. Синтез бифункциональных частиц-контейнеров из кремнезема на мицеллах антисептика с солюбилизированным куркумином и оценка их биологической активности // Коллоид. журн. 2021. Т. 83. № 6. С. 623–633. https://doi.org/10.31857/S0023291221060021
  7. Жильцова Е.П., Исламов Д.Р., Захарова Л.Я. Оценка фактора формы агрегатов в самоассоциирующихся системах на основе металлоПАВ // Коллоид. журн. 2023. T. 85. № 3. С. 287–295. https://doi.org/10.31857/S0023291223600177
  8. Кашапов Р.Р., Миргородская А.Б., Кузнецов Д.М., Разуваева Ю.С., Захарова Л.Я. Наноразмерные супрамолекулярные системы: от коллоидных ПАВ к амфифильным макроциклам и суперамфифилам // Коллоид. журн. 2022. T. 84. № 5. С. 503–522. https://doi.org/10.31857/S0023291222600092
  9. Pavlov R.V., Gaynanova G.A., Kuznetsova D.A., Vasileva L.A., Zueva I.V., Sapunova A.S., Buzyurova D.N., Babaev V.M., Voloshina A.D., Lukashenko S.S., Rizvanov I. Kh., Petrov K.A., Zakharova L. Ya., Sinyashin O.G. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake // International Journal of Pharmaceutics. 2020. V. 587. P. 119640. https://doi.org/10.1016/j.ijpharm.2020.119640
  10. Chowdhury S., Rakshit At., Acharjee An., Saha B., Biodegradability and biocompatibility: Advancements in synthetic surfactants // Journal of Molecular Liquids. 2021. V. 324. P. 115105. https://doi.org/10.1016/j.molliq.2020.115105
  11. Ghosh S., Ray A., Pramanik N., Ambade B. Can a catanionic surfactant mixture act as a drug delivery vehicle? // Comptes Rendus Chimie. 2016. V. 19. № 8. P. 951–954. https://doi.org/10.1016/j.crci.2016.03.020
  12. Ghosh S., Ray A., Pramanik N. Self-assembly of surfactants: An overview on general aspects of amphiphiles // Biophysical Chemistry. 2020. V. 265. P. 106429. https://doi.org/10.1016/j.bpc.2020.106429
  13. El Seoud O.A., Keppeler N., Malek N.I., Galgano P.D. Ionic liquid-based surfactants: Recent advances in their syntheses, solution properties, and applications // Polymers. 2021. V. 13. № 7. P. 1100. https://doi.org/10.3390/polym13071100
  14. Wasserscheid P., van Hal R., Bösmann A. 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate – an even ‘greener’ ionic liquid // Green Chemistry. 2002. V. 4. № 4. P. 400–404. https://doi.org/10.1039/B205425F
  15. Rao K.S., Trivedi T.J., Kumar A. Aqueous-biamphiphilic ionic liquid systems: Self-assembly and synthesis of gold nanocrystals/microplates // Journal of Physical Chemistry B. 2012. V. 116. № 49. P. 14363–14374. https://doi.org/10.1021/jp309717n
  16. Bharmoria P., Mehta M.J., Pancha I., Kumar A. Structural and functional stability of cellulase in aqueous-biamphiphilic ionic liquid surfactant solution // Journal of Physical Chemistry B. 2014. V. 118. № 33. P. 9890–9899. https://doi.org/10.1021/jp506211b
  17. Pal A., Punia R., Dubey G.P. Formation of mixed micelles in an aqueous mixture of a biamphiphilic surface active ionic liquid and an anionic surfactant: Experimental and theoretical study // Journal of Molecular Liquids. 2021. V. 337. P. 116355. https://doi.org/10.1016/j.molliq.2021.116355
  18. Pal A., Punia R. Self-aggregation behaviour of cationic surfactant tetradecyltrimethylammonium bromide and bi-amphiphilic surface active ionic liquid 3-methyl-1-pentylimidazolium dodecylsulfate in aqueous solution // Journal of Molecular Liquids. 2020. V. 304. P. 112803. https://doi.org/10.1016/j.molliq.2020.112803
  19. Shi J., Shen X. Construction of supramolecular self-assemblies based on the biamphiphilic ionic liquid–β-cyclodextrin system // Journal of Physical Chemistry B. 2014. V. 118. № 6. P. 1685–1695. https://doi.org/10.1021/jp4113188
  20. Singh G., Singh G., Kang T.S. Micellization behavior of surface active ionic liquids having aromatic counterions in aqueous media // Journal of Physical Chemistry B. 2016. V. 120. № 6. P. 1092–1105. https://doi.org/10.1021/acs.jpcb.5b09688
  21. Singh G., Komal, Singh M., Singh O., Kang T.S. Hydrophobically driven morphologically diverse self-assembled architectures of deoxycholate and imidazolium-based biamphiphilic ionic liquids in aqueous medium // Journal of Physical Chemistry B. 2018. V. 122. № 50. P. 12227–12239. https://doi.org/10.1021/acs.jpcb.8b10161
  22. Kaur M., Kaur H., Singh M., Singh G., Kang T.S. Biamphiphilic ionic liquid based aqueous microemulsions as an efficient catalytic medium for cytochrome c // Physical Chemistry Chemical Physics. 2021. V. 23. № 1. P. 320–328. https://doi.org/10.1039/D0CP04513F
  23. Pavlov R., Valeeva F., Gaynanova G., Kuznetsov D., Zakharova L. Aggregation of morpholinium surfactants with amino alcohols as additives: A close look // Surface Innovations. 2023. V. 11. № 1–3. P. 169–177. https://doi.org/10.1680/jsuin.22.00006
  24. Hong J.-Y., Kim J.-K., Song Y.-K., Park J.-S., Kim C.-K. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption // Journal of Controlled Release. 2006. V. 110. № 2. P. 332–338. https://doi.org/10.1016/j.jconrel.2005.10.002
  25. Mirgorodskaya A.B., Lukashenko S.S., Yatskevich E.I., Kulik N.V., Voloshina A.D., Zobov V.V., Zakharova L.Y., Konovalov A.I., Kudryavtsev D.B., Panteleeva A.R. Aggregation behavior, anticorrosion effect, and antimicrobial activity of alkylmethylmorpholinium bromides // Protection of Metals and Physical Chemistry of Surfaces. 2014. V. 50. P. 538–542. https://doi.org/10.1134/S207020511404011X
  26. Chiappe C., Pomelli C.S., Rajamani S. Influence of structural variations in cationic and anionic moieties on the polarity of ionic liquids // Journal of Physical Chemistry B. 2011. V. 115. № 31. P. 9653–9661. https://doi.org/10.1021/jp2045788
  27. Obliosca J.M., Arco S.D., Huang M.H. Synthesis and optical properties of 1-alkyl-3-methylimidazolium lauryl sulfate ionic liquids // Journal of Fluorescence. 2007. V. 17. P. 613–618. https://doi.org/10.1007/s10895-007-0236-7
  28. Kuznetsova D.A., Kuznetsov D.M., Vasileva L.A., Toropchina A.V., Belova D.K., Amerhanova S.K., Lyubina A.P., Voloshina A.D., Zakharova L. Ya. Pyrrolidinium surfactants with a biodegradable carbamate fragment: Self-assembling and biomedical application // Journal of Molecular Liquids. 2021. V. 340. P. 117229. https://doi.org/10.1016/j.molliq.2021.117229
  29. Kuznetsova D.A., Kuznetsov D.M., Amerhanova S.K., Buzmakova E.V., Lyubina A.P., Syakaev V.V., Nizameev I.R., Kadirov M.K., Voloshina A.D., Zakharova L. Ya. Cationic imidazolium amphiphiles bearing a methoxyphenyl fragment: Synthesis, self-assembly behavior, and antimicrobial activity // Langmuir. 2022. V. 38. № 16. P. 4921–4934. https://doi.org/10.1021/acs.langmuir.2c00299
  30. Kuznetsov D.M., Kuznetsova D.A., Gabdrakhmanov D.R., Lukashenko S.S., Nikitin Y.N., Zakharova L. Ya. Triallyl ammonium amphiphiles: Self-assembly and complexation with bovine serum albumin // Surface Innovations. 2022. V. 10. № 4–5. P. 298–311. https://doi.org/10.1680/jsuin.21.00044
  31. Кузнецов Д.М., Кузнецова Д.А., Захарова Л.Я. Липосомы, модифицированные борнеолсодержащими поверхностно-активными веществами, для трансдермальной доставки гидрофильных субстратов // Известия Академии наук. Серия химическая. 2022. Т. 71. № 9. C. 1887–1896.
  32. Samarkina D.A., Gabdrakhmanov D.R., Lukashenko S.S., Khamatgalimov A.R., Kovalenko V.I., Zakharova L.Y. Cationic amphiphiles bearing imidazole fragment: From aggregation properties to potential in biotechnologies // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. V. 529. P. 990–997. https://doi.org/10.1016/j.colsurfa.2017.07.018
  33. Perinelli D.R., Cespi M., Lorusso N., Palmieri G.F., Bonacucina G., Blasi P. Surfactant self-assembling and critical micelle concentration: One approach fits all? // Langmuir. 2020. V. 36. № 21. P. 5745–5753. https://doi.org/10.1021/acs.langmuir.0c00420
  34. Васильева Л.А., Кузнецова Д.А., Валеева Ф.Г., Васильева Э.А., Лукашенко С.С., Гайнанова Г.А., Захарова Л.Я. Мицеллярные наноконтейнеры на основе катионных ПАВ с пирролидиниевой головной группой для повышения биодоступности лекарственных средств // Известия Академии наук. Серия химическая. 2021. № 7. C. 1341–1348.
  35. Perinelli D.R., Cespi M., Casettari L., Vllasaliu D., Cangiotti M., Ottaviani M.F., Giorgioni G., Bonacucina G., Palmieri G.F. Correlation among chemical structure, surface properties and cytotoxicity of N-acyl alanine and serine surfactants // European Journal of Pharmaceutics and Biopharmaceutics. 2016. V. 109. P. 93–102. https://doi.org/10.1016/j.ejpb.2016.09.015
  36. Shaban S.M., Kang J., Kim D.-H. Surfactants: Recent advances and their applications // Composites Communications. 2020. V. 22. P. 100537. https://doi.org/10.1016/j.coco.2020.100537
  37. Колесникова Е.Н., Глухарева Н.А. Мицеллообразование в растворах анионных ПАВ с двумя ионогенными группами // Коллоид. журн. 2008. Т. 70. № 2. С. 207–211.
  38. Mabrouk M.M., Hamed N.A., Mansour F.R. Spectroscopic methods for determination of critical micelle concentrations of surfactants; a comprehensive review // Applied Spectroscopy Reviews. 2023. V. 58. № 3. P. 206–234. https://doi.org/10.1080/05704928.2021.1955702
  39. Chatterjee A., Moulik S.P., Sanyal S.K., Mishra B.K., Puri P.M. Thermodynamics of micelle formation of ionic surfactants: A critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements // Journal of Physical Chemistry B. 2001. V. 105. № 51. P. 12823–12831. https://doi.org/10.1021/jp0123029
  40. Piñeiro L., Novo M., Al–Soufi W. Fluorescence emission of pyrene in surfactant solutions // Advances in Colloid and Interface Science. 2015. V. 215. P. 1–12. https://doi.org/10.1016/j.cis.2014.10.010
  41. Aguiar J., Carpena P., Molina–Bolı́var J.A., Carnero Ruiz C. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method // Journal of Colloid and Interface Science. 2003. V. 258. № 1. P. 116–122. https://doi.org/10.1016/S0021-9797(02)00082-6
  42. Pisárčik M., Devínsky F., Pupák M. Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching // Open Chemistry. 2015. V. 13. № 1. P. 922–931. https://doi.org/10.1515/chem-2015-0103
  43. Israelachvili J.N., Mitchell D.J., Ninham B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers // Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics. 1976. V. 72. P. 1525–1568. https://doi.org/10.1039/F29767201525
  44. Vashishat R., Sanan R., Ray D., Aswal V.K., Mahajan R.K. Biamphiphilic ionic liquids-drug mixtures: Interactional and morphological aspects // ChemistrySelect. 2018. V. 3. № 25. P. 7089–7099. https://doi.org/10.1002/slct.201801296
  45. Zakharova L. Ya., Vasilieva E.A., Mirgorodskaya A.B., Zakharov S.V., Pavlov R.V., Kashapova N.E., Gaynanova G.A. Hydrotropes: Solubilization of nonpolar compounds and modification of surfactant solutions // Journal of Molecular Liquids. 2023. V. 370. P. 120923. https://doi.org/10.1016/j.molliq.2022.120923
  46. Saha U., De R., Das B. Interactions between loaded drugs and surfactant molecules in micellar drug delivery systems: A critical review // Journal of Molecular Liquids. 2023. V. 382. P. 121906. https://doi.org/10.1016/j.molliq.2023.121906
  47. Tehrani-Bagha A., Holmberg K. Solubilization of hydrophobic dyes in surfactant solutions // Materials. 2013. V. 6. № 2. P. 580–608. https://doi.org/10.3390/ma6020580
  48. Vasilieva E.A., Kuznetsova D.A., Valeeva F.G., Kuznetsov D.M., Zakharova L. Ya. Role of polyanions and surfactant head group in the formation of polymer–colloid nanocontainers // Nanomaterials. 2023. V. 13. № 6. P. 1072. https://doi.org/10.3390/nano13061072
  49. Gabdrakhmanov D.R., Samarkina D.А., Krylova E.S., Kapitanov I.V., Karpichev Y., Latypov Sh.K., Semenov V.E., Nizameev I.R., Kadirov M.K., Zakharova L. Ya. Supramolecular systems based on novel amphiphiles and a polymer: Aggregation and selective solubilization // Journal of Surfactants and Detergents. 2019. V. 22. № 4. P. 865–874. https://doi.org/10.1002/jsde.12257
  50. Tehrani–Bagha A., Holmberg K. Solubilization of hydrophobic dyes in surfactant solutions // Materials. 2013. V. 6. № 2. P. 580–608. https://doi.org/10.3390/ma6020580
  51. Mirgorodskaya A.B., Yackevich E.I., Gabdrakhmanov D.R., Lukashenko S.S., Zuev Yu.F., Zakharova L. Ya. Self-organization and lipoplex formation of cationic surfactants with morpholinium head group // Journal of Molecular Liquids. 2016. V. 220. P. 992–998. https://doi.org/10.1016/j.molliq.2016.05.010
  52. Mata J., Varade D., Ghosh G., Bahadur P. Effect of tetrabutylammonium bromide on the micelles of sodium dodecyl sulfate // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004. V. 245. № 1–3. P. 69–73. https://doi.org/10.1016/j.colsurfa.2004.07.009

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Изотермы поверхностного натяжения водных растворов биамфифилов Мор-n(ДС): черный квадрат – Мор-4(ДС), черный ромб – Мор-6(ДС), черный круг – Мор-8(ДС), черный треугольник – Мор-10(ДС); 25°С.

Скачать (156KB)
3. Рис. 2. Зависимость отношения интенсивностей флуоресценции первого (373 нм) и третьего (384 нм) колебательных пиков пирена от концентрации биамфифилов для бинарных систем Мор-n(ДС)/пирен: черный квадрат – Мор-4(ДС), черный ромб – Мор-6(ДС), черный круг – Мор-8(ДС), черный треугольник – Мор-10(ДС); 25°С.

Скачать (136KB)
4. Рис. 3. Распределение агрегатов по размерам, усредненное по числу частиц, для водных растворов Мор-n(ДС): а) Мор-4(ДС); б) Мор-6(ДС); в) Мор-8(ДС); г) Мор-10(ДС); 25°С.

Скачать (964KB)
5. Рис. 4. Зависимость электрокинетического потенциала водных растворов Мор-n(ДС) от концентрации биамфифилов: черный квадрат – Мор-4(ДС), черный ромб – Мор-6(ДС), черный круг – Мор-8(ДС), черный треугольник – Мор-10(ДС); 25°С.

Скачать (115KB)
6. Рис. 5. Зависимость оптической плотности Оранж ОТ при длине волны 495 нм от концентрации БПАВ для бинарных систем Мор-n(ДС)/Оранж ОТ: черный квадрат – Мор-4(ДС), черный ромб – Мор-6(ДС), черный круг – Мор-8(ДС), черный треугольник – Мор-10(ДС); 25°С.

Скачать (149KB)
7. Рис. 6. Значения солюбилизационной емкости мицелл для различных амфифильных систем.

Скачать (197KB)
8. Рис. П1. ЯМР 1H спектр соединения Мор-4(ДС).

Скачать (656KB)
9. Рис. П2. Масс-спектр ИЭР соединения Мор-4(ДС) (регистрация положительных ионов).

Скачать (258KB)
10. Рис. П3. Масс-спектр ИЭР соединения Мор-4(ДС) (регистрация отрицательных ионов).

Скачать (268KB)
11. Рис. П4. ИК-спектр соединения Мор-4(ДС).

Скачать (306KB)
12. Рис. П5. ЯМР 1H спектр соединения Мор-6(ДС).

Скачать (565KB)
13. Рис. П6. Масс-спектр ИЭР соединения Мор-6(ДС) (регистрация положительных ионов).

Скачать (314KB)
14. Рис. П7. Масс-спектр ИЭР соединения Мор-6(ДС) (регистрация отрицательных ионов).

Скачать (273KB)
15. Рис. П8. ИК-спектр соединения Мор-6(ДС).

Скачать (578KB)
16. Рис. П9. ЯМР 1H спектр соединения Мор-8(ДС).

Скачать (578KB)
17. Рис. П10. Масс-спектр ИЭР соединения Мор-8(ДС) (регистрация положительных ионов).

Скачать (278KB)
18. Рис. П11. Масс-спектр ИЭР соединения Мор-8(ДС) (регистрация отрицательных ионов).

Скачать (297KB)
19. Рис. П12. ИК-спектр соединения Мор-8(ДС).

Скачать (287KB)
20. Рис. П13. ЯМР 1H спектр соединения Мор-10(ДС).

Скачать (529KB)
21. Рис. П14. Масс-спектр ИЭР соединения Мор-10(ДС) (регистрация положительных ионов).

Скачать (310KB)
22. Рис. П15. Масс-спектр ИЭР соединения Мор-10(ДС) (регистрация отрицательных ионов).

Скачать (289KB)
23. Рис. П16. ИК-спектр соединения Мор-10(ДС).

Скачать (298KB)
24. Рис. П17. Зависимость удельной электропроводности от концентрации биамфифилов: а) для систем Мор-4(ДС) и Мор-6(ДС); б) для систем Мор-8(ДС) и Мор-10(ДС); черный квадрат – Мор-4(ДС), черный ромб – Мор-6(ДС), черный круг – Мор-8(ДС), черный треугольник – Мор-10(ДС); 25°С.

Скачать (246KB)
25. Рис. П18. Спектры флуоресценции пирена в присутствии различных количеств тушителя (ЦПБ) для 3 мМ (а), 5 мМ (б) и 7 мМ (в) Мор-4(ДС); стрелкой показано направление увеличения концентрации тушителя.

Скачать (708KB)
26. Рис. П19. Спектры флуоресценции пирена в присутствии различных количеств тушителя (ЦПБ) для 3 мМ (а), 5 мМ (б) и 7 мМ (в) Мор-6(ДС); стрелкой показано направление увеличения концентрации тушителя.

Скачать (719KB)
27. Рис. П20. Спектры флуоресценции пирена в присутствии различных количеств тушителя (ЦПБ) для 1 мМ (а), 3 мМ (б) и 5 мМ (в) Мор-8(ДС); стрелкой показано направление увеличения концентрации тушителя.

Скачать (639KB)
28. Рис. П21. Спектры флуоресценции пирена в присутствии различных количеств тушителя (ЦПБ) для 0.5 мМ (а), 0.8 мМ (б) и 1 мМ (в) Мор-10(ДС); стрелкой показано направление увеличения концентрации тушителя.

Скачать (591KB)
29. Рис. П22. Спектры поглощения Оранж ОТ для бинарных систем Мор-n(ДС)/Оранж ОТ при различных концентрациях ПАВ: а) Мор-4(ДС); б) Мор-6(ДС); в) Мор-8(ДС); г) Мор-10(ДС); стрелкой показано увеличение концентрации ПАВ; 25°С.

Скачать (987KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах