Сравнительный анализ характеристик водных суспензий магнитных наночастиц оксидов железа различного фазового состава

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено взаимодействие с водной средой наночастиц оксидов железа, отвечающих составу твердых растворов магнетит-маггемитового ряда с различным соотношением катионов Fe2+/Fe3+. Установлено, что для наночастиц, наиболее близко соответствующих составу маггемита (γ-Fe2O3), характерны наибольшие значения гидродинамического диаметра и резкое снижение pH дисперсионной среды при диспергировании порошков в воде. Для наночастиц, фазовый состав которых соответствует твердому раствору из середины магнетит-маггемитового ряда, наблюдается плавное и менее выраженное снижение рН. Показано, что разбавление водных суспензий, полученных из предварительно высушенных порошков, в диапазоне концентраций от 100 до 0.001 мг/л с последующей ультразвуковой обработкой приводит к существенному увеличению гидродинамического диаметра частиц оксидов железа. Рассмотрен возможный механизм исследуемого взаимодействия наночастиц с водной средой, включающий гидратацию образованных ионами железа льюисовских кислотных центров и изменение характера диссоциации гидроксильных групп в зависимости от pH суспензии. Изучено влияние пассивации поверхности исследуемых нанопорошков олеиновой кислотой на рассматриваемые процессы. Полученные результаты позволяют прогнозировать агрегативную устойчивость и ряд других характеристик исследуемых суспензий при разбавлении их водой.

Об авторах

А. С. Коваленко

Институт химии силикатов им. И.В. Гребенщикова
Российской академии наук

Email: anastasiya.bychk@yandex.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, 2

О. А. Шилова

Институт химии силикатов им. И.В. Гребенщикова
Российской академии наук; Санкт-Петербургский государственный технологический институт
(технический университет)

Email: anastasiya.bychk@yandex.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, 2; Россия, 190013, Санкт-Петербург, Московский просп., 26

А. М. Николаев

Институт химии силикатов им. И.В. Гребенщикова
Российской академии наук

Email: anastasiya.bychk@yandex.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, 2

С. В. Мякин

Санкт-Петербургский государственный технологический институт
(технический университет); Институт аналитического приборостроения РАН

Автор, ответственный за переписку.
Email: anastasiya.bychk@yandex.ru
Россия, 190013, Санкт-Петербург, Московский просп., 26; Россия, 198095 , Санкт-Петербург, ул. Ивана Черных, 31/33

Список литературы

  1. Sankaranarayanan S.A., Thomas A., Revi N. et al. Iron oxide nanoparticles for theranostic applications – Recent advances // Journal of Drug Delivery Science and Technology. 2022. V. 70. P. 103196. https://doi.org/10.1016/j.jddst.2022.103196
  2. Yeste M.P., Fernández-Ponce C., Félix E. et al. Solvothermal synthesis and characterization of ytterbium/iron mixed oxide nanoparticles with potential functionalities for applications as multiplatform contrast agent in medical image techniques // Ceramics International. 2022. V. 48. № 21. P. 31191–31202. https://doi.org/10.1016/j.ceramint.2022.06.194
  3. Ezealigo U.S., Ezealigo B.N., Aisida S.O. et al. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective // Journal of Colloid and Interface Science Open. 2021. V. 4. P. 100027. https://doi.org/10.1016/j.jciso.2021.100027
  4. Tombuloglu H., Slimani Y., Akhtar S. et al. The size of iron oxide nanoparticles determines their translocation and effects on iron and mineral nutrition of pumpkin (Cucurbita maxima L.) // Journal of Magnetism and Magnetic Materials. 2022. V. 564. № 1. P. 170058. https://doi.org/10.1016/j.jmmm.2022.170058
  5. Kovalenko A.S., Nikolaev A.M., Khamova T.V. et al. Synthesis of iron oxide magnetic nanoparticles and their effect on growth, productivity, and quality of tomato // Glass Physics and Chemistry. 2021. V. 47. № 1. P. 67–74. https://doi.org/10.1134/S1087659621070063
  6. Кропачева Т.Н., Антонова А.С., Журавлева А.Ю. Модифицирование поверхности магнитных оксидов железа фосфоновыми комплексонами // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 3. С. 231–237. https://doi.org/10.31857/S0044185620030225
  7. Икаев А.М., Мингалёв П.Г., Лисичкин Г.В. Химическое модифицирование поверхности оксидов железа кремний- и фосфорорганическими соединениями // Коллоидный журнал. 2007. Т. 69. № 6. С. 791–797.
  8. Mikhaylov V.I., Kryuchkova A.V., Sitnikov P.A. et al. Magnetite hydrosols with positive and negative surface charge of nanoparticles: Stability and effect on the lifespan of Drosophila melanogaster // Langmuir. 2020. V. 36. № 16. P. 4405–4415. https://doi.org/10.1021/acs.langmuir.0c00605
  9. Yang H.-M., Park C.W., Ahn T. et al. A direct surface modification of iron oxide nanoparticles with various poly(amino acid)s for use as magnetic resonance probes // Journal of Colloid and Interface Science. 2013. V. 391. P. 158–167. https://doi.org/10.1016/j.jcis.2012.09.044
  10. Masuku M., Ouma L., Pholosi A. Microwave assisted synthesis of oleic acid modified magnetite nanoparticles for benzene adsorption // Environmental Nanotechnology, Monitoring & Management. 2021. V. 15. P. 100429. https://doi.org/10.1016/j.enmm.2021.100429
  11. Mengesha A., Hoerres A., Mahajan P. Cytocompatibility of oleic acid modified iron oxide nanoparticles // Materials Letters. 2022. V. 323. P. 132528. https://doi.org/10.1016/j.matlet.2022.132528
  12. Asif S., Kaur G., Sharma S. et al. Oleic acid magnetic iron oxide nanoparticles improve iron uptake by the modification of NADH-HCF (III) oxidoreductase without affecting cellular viability // Gene Reports. 2020. V. 21. P. 100837. https://doi.org/10.1016/j.genrep.2020.100837
  13. Gambhir R.P., Rohiwal S.S., Tiwari A.P. Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review // Applied Surface Science Advances. 2022. V. 11. P. 100303. https://doi.org/10.1016/j.apsadv.2022.100303
  14. Wu K., Liu J., Saha R. et al. An investigation of commercial iron oxide nanoparticles: Advanced structural and magnetic properties characterization // ACS Omega. 2021. V. 6. P. 6274–6283. https://doi.org/10.1021/acsomega.0c05845
  15. Sun Z.-X., Su F.-W., Forsling W. et al. Surface characteristics of magnetite in aqueous suspension // Journal of Colloid and Interface Science. 1998. V. 197. № 1. P. 151–159. https://doi.org/10.1006/jcis.1997.5239
  16. Salazar-Camacho C., Villalobos M, Luz Rivas-Sánchez M., Arenas-Alatorre J. et al. Characterization and surface reactivity of natural and synthetic magnetites // Chemical Geology. 2013. V. 347. P. 233–245. https://doi.org/10.1016/j.chemgeo.2013.03.017
  17. Vidojkovic S.M., Rakin M.P. Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review // Advances in Colloid and Interface Science. 2017. V. 245. P. 108–129. https://doi.org/10.1016/j.cis.2016.08.008
  18. Kosmulski M. The pH dependent surface charging and points of zero charge. IX. Update // Advances in Colloid and Interface Science. 2021. V. 296. P. 102519. https://doi.org/10.1016/j.cis.2021.102519
  19. Шилова О.А., Николаев А.М., Коваленко А.С. и др. Синтез магнитных нанопорошков оксида железа – магнетита и маггемита // Журнал неорганической химии. 2020. Т. 65. № 3. С. 398–402. https://doi.org/10.31857/S0044457X20030137
  20. Shilova O.A., Panova G.G., Nikolaev A.M. et al. Aqueous chemical co-precipitation of iron oxide magnetic nanoparticles for use in agricultural technologies // Letters in Applied NanoBioScience. 2021. V. 10. № 2. P. 2215–2239. https://doi.org/10.33263/LIANBS102.22152239
  21. Панова Г.Г., Шилова О.А., Николаев А.М. и др. О влиянии наночастиц оксида железа на растения в вегетативный период развития // Агрофизика. 2019. № 3. С. 40–50. https://doi.org/10.25695/ AGRPH.2019.03.07
  22. Liu S. Wu G., Chen H.-Zh. et al. Preparation and characterization of Fe3O4/SiO2 particles for dual-particle electrophoretic display // Synthetic Metals. 2012. V. 162. №. 1–2. P. 89–94. https://doi.org/10.1016/j.synthmet.2011.11.016
  23. Nasrazadani S., Raman A. The application of infrared spectroscopy to the study of rust systems—II. Study of cation deficiency in magnetite (Fe3O4) produced during its transformation to maghemite (γ-Fe2O3) and hematite (α-Fe2O3) // Corrosion Science. 1993. V. 34. № 8. P. 1355–1365. https://doi.org/10.1016/0010-938X(93)90092-U
  24. Pecharroman C., Gonzalez-Carreno T., Iglesias J.E. The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders // Physics and Chemistry of Minerals. 1995. V. 22. P. 21–29. https://doi.org/10.1007/BF00202677
  25. Anthony J.W. Bideaux R.A., Bladh K.W. Magnetite. Handbook of Mineralogy. Chantilly. VA: Mineralogical Society of America, 2018.
  26. Koshevaya E., Nazarovskaia D., Simakov M. et al. Surfactant-free tantalum oxide nanoparticles: Synthesis, colloid properties, and application as a contrast agent for computed tomography // Journal of Materials Chemistry B. 2020. V. 8. № 36. P. 8337–8345. https://doi.org/10.1039/D0TB01204A
  27. Drozdov A.S., Ivanovski V., Avnir D. et al. A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH // Journal of Colloid and Interface Science. 2016. V. 468. P. 307–312. https://doi.org/10.1016/j.jcis.2016.01.061
  28. Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. М.: Химия, 2000.
  29. Добычин Д.П., Каданер Л.И., Серпинский В.В. Физическая и коллоидная химия: Учебное пособие для студентов химических и биологических специальностей педагогических институтов. М.: Просвещение, 1986.

Дополнительные файлы



Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах