Numerical Simulation of Stationary Nucleation Taking into Account Thermal Effects in a Wide Range of Supersaturations
- Autores: Perevoshchikov E.E.1, Zhukhovitskii D.I.1
-
Afiliações:
- United Institute of High Temperatures RAS
- Edição: Volume 87, Nº 4 (2025)
- Páginas: 387-397
- Seção: Articles
- ##submission.dateSubmitted##: 06.10.2025
- ##submission.datePublished##: 15.08.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/318382
- DOI: https://doi.org/10.7868/S3034543X25040105
- EDN: https://elibrary.ru/npydbp
- ID: 318382
Citar
Resumo
Palavras-chave
Sobre autores
E. Perevoshchikov
United Institute of High Temperatures RASIzhorskaya St., 12, build. 2, Moscow, 125412 Russia
D. Zhukhovitskii
United Institute of High Temperatures RAS
Email: dmr@ihed.ras.ru
Izhorskaya St., 12, build. 2, Moscow, 125412 Russia
Bibliografia
- Райзер Ю.П. О конденсации в облаке испаренного вещества, расширяющегося в пустоту // Журнал экспериментальной и теоретической физики. 1959. T. 37. № 6. C. 1741–1750.
- Abyzov A.S., Schmelzer Jürn W.P., Kovalchuk A.A., et al. Evolution of cluster size-distributions in nucleation-growth and spinodal decomposition processes in a regular solution // J. Non-Cryst. Solids. 2009. V. 356. № 52–54. P. 2915–2922. https://doi.org/10.1016/j.jnoncrysol.2010.02.031
- Volmer M., Weber A. Keimbildung in übersättigten Gebilden // Zeitschrift für Physikalische Chemie. 1926. V. 119U. № 1. P. 277–301. https://doi.org/10.1515/zpch-1926-11927
- Becker R., Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen // Annalen Der Physik. 1935. V. 416. № 8. P. 719–752. https://doi.org/10.1002/andp.19354160806
- Зельдович Я.Б. К теории образования новой фазы. Кавитация // Журнал экспериментальной и теоретической физики. 1942. Т. 12. № 11–12. С. 525–38.
- Chesnokov E.N., Krasnoperov L.N. Complete thermodynamically consistent kinetic model of particle nucleation and growth: Numerical study of the applicability of the classical theory of homogeneous nucleation // J. Chem. Phys. 2007. V. 126. № 14. P. 144504. https://doi.org/10.1063/1.2672647
- Wilemski G. The Kelvin equation and self-consistent nucleation theory // J. Chem. Phys. 1995. V. 103. № 3. P. 1119–1126. https://doi.org/10.1063/1.469822
- Katz J.L., Blander M. Condensation and boiling: Corrections to homogeneous nucleation theory for nonideal gases // J. Colloid Interface Sci. 1973. V. 42. № 3. P. 496–502. https://doi.org/10.1016/0021-9797(73)90035-0
- Barschdorff D. Carrier gas effects on homogeneous nucleation of water vapor in a shock tube // Phys. Fluids. 1975. V. 18. № 5. P. 529–535. https://doi.org/10.1063/1.861185
- Wyslouzil B.E., Seinfeld J.H. Nonisothermal homogeneous nucleation // J. Chem. Phys. 1992. V. 97. № 4. P. 2661–2670. https://doi.org/10.1063/1.463055
- Barrett J.C. A Stochastic simulation of nonisothermal nucleation // J. Chem. Phys. 2008. V. 128. № 16. P. 164519. https://doi.org/10.1063/1.2913051
- Barrett J.C. Note: Cluster temperatures in non-isothermal nucleation // J. Chem. Phys. 2011. V. 135. № 9. P. 096101. https://doi.org/10.1063/1.3636080
- Barrett J.C., Clement C.F., Ford I.J. Energy fluctuations in homogeneous nucleation theory for aerosols // J. Phys. A: Math. Gen. 1993. V. 26. № 3. P. 529. https://doi.org/10.1088/0305-4470/26/3/016
- Zhukhovitskii D.I. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor // J. Chem. Phys. 2016. V. 144. № 18. P. 184701. https://doi.org/10.1063/1.4948436
- Zhukhovitskii D.I., Zhakhovsky V.V. Thermodynamics and the structure of clusters in the dense au vapor from molecular dynamics simulation // J. Chem. Phys. 2020. V. 152. № 22. P. 224705. https://doi.org/10.1063/5.0010156
- Gunton J.D. Homogeneous nucleation // J. Stat. Phys. 1999. V. 95. № 5. P. 903–923. https://doi.org/10.1023/A:1004598332758
- Feder J., Russell K.C., Lothe J., et al. Homogeneous nucleation and growth of droplets in vapours // Adv. Phys. 1966. V. 15. № 57. P. 111–178. https://doi.org/10.1080/00018736600101264
- Башкиров А.Г., Фисенко С.П. Вывод уравнений теории неизотермической нуклеации // ТМФ. 1981. Т. 48. С. 106–111.
- Скутова И.В., Фисенко С.П. Шабуня С.И. Математическое моделирование кинетики неизотермической нуклеации в парогазовых смесях // Химическая физика. 1990. Т. 9. № 3. С. 426–432.
- Zhukhovitskii D.I. Multiscale approach to the theory of nonisothermal homogeneous nucleation // J. Chem. Phys. 2024. V. 160. № 19. P. 194505. https://doi.org/10.1063/5.0198471
- Thompson A.P., Aktulga H.M., Berger R., et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales // Comput. Phys. Commun. 2022. V. 271. P 108171. https://doi.org/10.1016/j.cpc.2021.108171
- Zhukhovitskii D.I. Molecular dynamics study of cluster evolution in supersaturated vapor // J. Chem. Phys. 1995. V. 103. № 21. P. 9401–9407. https://doi.org/10.1063/1.470000
- Дуников Д.О. Исследование влияния неоднородностей полевых переменных при фазовых превращениях на свойства межфазной границы раздела жидкость–газ: дис. канд. физ.-мат. наук: 01.04.14. – Институт высоких температур. Москва. 2004. 105 с.
- Napari I., Julin J., Vehkamäki H. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation // J. Chem. Phys. 2009. V. 131. № 24. P. 244511. https://doi.org/10.1063/1.3279127
- Halonen R., Zapadinsky E., Vehkamäki H. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation // J. Chem. Phys. 2018. V. 148. № 16. P. 164508. https://doi.org/10.1063/1.5023304
Arquivos suplementares
