COMPATIBLE PRECURSOR FOR SOL-GEL MINERALIZATION OF COLLOIDAL SYSTEMS. MINI-REVIEW
- Authors: Shchipunov Y.A1
-
Affiliations:
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
- Issue: Vol 87, No 6 (2025)
- Pages: 889–906
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376465
- DOI: https://doi.org/10.7868/S3034543X25060181
- ID: 376465
Cite item
Abstract
Colloidal systems used as a template in sol- gel synthesis are of great interest owing to their structural diversity, however, they are very sensitive to the experimental conditions. The introduction of a precursor, the release of an organic solvent during hydrolysis, the addition of catalytic additives - acid or alkali, heating lead to rearrangement and phase transformations. As a result, the final state turns out to be significantly changed compared to the initial one, which is not determined a priori. The review is devoted to precursors with ethylene glycol residues, which, unlike tetraethoxysilane used in traditional sol- gel synthesis, are hydrophilic, completely soluble in water, hydrolyzes in neutral aqueous solutions, do not require the addition of a catalyst and heating. Furthermore, unlike ethanol, ethylene glycol, in the quantities in which it is released during hydrolysis, does not lead to the transformation of colloidal systems. The review covers the preparation of the precursors, the issues of sol- gel chemistry and examples of the formation of various functional materials that are synthesized using a simpler protocol in one step under conditions determined by the mineralized template, rather than the sol- gel process. Many of the mentioned silica materials can be synthesized only using ethylene glycol- containing silane.
About the authors
Yu. A Shchipunov
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
Email: yas@ich.dvo.ru
Vladivostok, Russia
References
- Максимов А.И., Мошников В.А., Таиров Ю.М., Шилова О.А. Основы золь-гель-технологии нанокомпозитов. СПб.: Изд-во СПбГЭТУ “ЛЭТИ”. 2007.
- Ariga K., Hill J.P., Lee M.V., Vinu A., Charvet R., Acharya S. Challenges and breakthroughs in recent research on self-assembly // Sci. Technol. Adv. Mater. 2008. V. 9. № 1. P. 1–96. https://doi.org/10.1088/1468-6996/9/1/014109
- Lu A.H., Zhao D., Wan Y. Nanocasting. A versatile strategy for creating nanostructured porous materials. Cambridge: The Royal Society of Chemistry. 2010.
- Ariga K., Vinu A., Yamauchi Y., Ji Q., Hill J.P. Nanoarchitectonics for mesoporous materials // Bull. Chem. Soc. Jpn. 2012. V. 85. № 1. P. 1–32. https://doi.org/10.1246/bcsj.20110162
- Van Der Voort P., Esquivel D., De Canck E., Goethals F., Van Driessche I., Romero-Salguero F.J. Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3913–3955. https://doi.org/10.1039/C2CS35222B
- Duan L., Wang C., Zhang W., Ma B., Deng Y., Li W., Zhao D. Interfacial assembly and applications of functional mesoporous materials // Chem. Rev. 2021. V. 121. № 23. P. 14349–14429. https://doi.org/doi: 10.1021/acs.chemrev.1c00236
- Bockstaller M.R., Mickiewicz R.A., Thomas E.L. Block copolymer nanocomposites: Perspectives for tailored functional materials // Adv. Mater. 2005. V. 17. № 11. P. 1331–1349. https://doi.org/10.1002/adma.200500167
- Yang X.Y., Li Y., Lemaire A., Yu J.G., Su B.L. Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks // Pure Appl. Chem. 2009. V. 81. № 12. P. 2265–2307. https://doi.org/10.1351/PAC-CON-09-05-06
- Han L., Che S. Anionic surfactant templated mesoporous silicas (AMSs) // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3740–3752. https://doi.org/10.1039/C2CS35297D
- Zhao D., Wan Y., Zhou W. Ordered Mesoporous Materials. Weinheim: Wiley-VCH. 2013.
- Yang X.Y., Chen L.H., Li Y., Rooke J.C., Sanches C., Su B.L. Hierarchically porous materials: Synthesis strategies and structure design // Chem. Soc. Rev. 2017. V. 46. № 2. P. 481–558. https://doi.org/10.1039/c6cs00829a
- Edler K.J. Formation of ordered mesoporous thin films through templating // Handbook of Sol–gel Science and Technology: Processing, Characterization and Applications / Ed. by Klein L., Aparicio M., Jitianu A. Cham: Springer, 2018. P. 917–983.
- Pierre A.C. Introduction to Sol–gel Processing. Boston : Kluwer. 2020.
- Schwuger M. J., Stickdorn K., Schomacker R. Microemulsions in technical processes // Chem. Rev. 1995. V. 95. № 4. P. 849–864.
- Mayer D. Surfaces, Interfaces, and Colloids: Principles and Applications. New York: Wiley-VCH. 1999.
- Jonsson B., Lindman B., Holmberg K., Kronberg B. Surfactants and polymers in aqueous solutions. Chichester: John Wiley. 2002.
- Birdi K.S. Surface and Colloid Chemistry. Principles and Applications. Boca Raton, FL: CRC Press. 2010.
- Goodwin J.W. Colloids and interfaces with surfactants and polymers – An Introduction. Chichester: Wiley. 2004.
- Davies J.T., Rideal E.K. Interfacial phenomena. New York: Academic Press. 1961.
- Hadjichristidis N., Pispas S., Floudas G. Block copolymers. Synthetic strategies, physical properties, and applications. Hoboken, NJ: Wiley. 2003.
- Kim J.K., Yang S.Y., Lee Y., Kim Y. Functional nanomaterials based on block copolymer self-assembly // Prog. Polym. Sci. 2010. V. 35. № 11. P. 1325–1349. https://doi.org/10.1016/j.progpolymsci.2010.06.002
- Pashley R.M., Karaman M.E. Applied colloid and surface chemistry. Hoboken, NJ: Wiley. 2021.
- Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism // Nature. 1992. V. 359 . P. 710–712. https://doi.org/10.1038/359710a0
- Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., Mccullen S.B., Higgins J.B., Schlenker J.L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates // J. Am. Chem. Soc. 1992. V. 114. № 27. P. 10834–10843. https://doi.org/10.1021/ja00053a020
- Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores // Science. 1998. V. 279. № 5350. P. 548–552. https://doi.org/10.1126/science.279.5350.548
- Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures // J. Am. Chem. Soc. 1998. V. 120. № 24. P. 6024–6036. https://doi.org/doi: 10.1021/ja974025i
- Ruthstein S., Schmidt J., Kesselman E., Talmon Y., Goldfarb D. Resolving intermediate solution structures during the formation of mesoporous SBA-15 // J. Am. Chem. Soc. 2006. V. 128. № 10. P. 3366–3374. https://doi.org/10.1021/ja0559911
- Sattler K., Gradzielski M., Mortensen K., Hoffmann H. Influence of surfactant on the gelation of novel ethylene glycol esters of silicic acid // Ber. Bunsenges. Phys. Chem. 1998. V. 102. № 11. P. 1544–1547.
- Hartmann S., Brandhuber D., Husing N. Glycol-modified silanes: Novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials // Acc. Chem. Res. 2007. V. 40. № 9. P. 885–894. https://doi.org/10.1021/ar6000318
- Shchipunov Y.A. Entrapment of biopolymers into sol–gel-derived silica nanocomposites // Bio-inorganic hybrid nanomaterials / Ed. by Ruiz-Hitzky E., Ariga K., Lvov Y. Weinheim. Wiley-VCH Verlag, 2008. P. 75–117.
- Shchipunov Y. Biomimetic sol–gel chemistry to tailor structure, properties, and functionality of bionanocomposites by biopolymers and cells // Mater. 2024. V. 17. № 1. P. 224. https://doi.org/10.3390/ma17010224
- Ebelmen J.J. Untersuchungen über die verbindungen der borsäure und kieselsäure mit aether // Liebigs. Ann. Chem. 1846. V. 57. № 3. P. 319–355. https://doi.org/10.1002/JLAC.18460570303
- Clark S.G., Holt P.F., Went C.W. The interaction of silicic acid with insulin, albumin and nylon monolayers // Trans. Faraday Soc. 1957. V. 53. № 0. P. 1500–1508. https://doi.org/10.1039/TF9575301500
- Brinker C.J., Scherer G.W. Sol–gel science. The physics and chemistry of sol–gel processing. Boston: Academic Press. 1990.
- Hench L.L. Sol–gel silica. Properties, processing and technology transfer. Westwood, NJ: Noyes Publications. 1998.
- Esposito S. Sol–gel synthesis strategies for tailored catalytic materials. Cham : Springer. 2023.
- Johnson P., Whateley T.L. On the use of polymerizing silica gel systems for the immobilization of trypsin // J. Colloid Interface Sci. 1971. V. 37. № 3. P. 557–563.
- Hench L.L., West J.K. The sol–gel process // Chem. Rev. 1990. V. 90. № 1. P. 33–72. https://doi.org/10.1021/cr00099a003
- Sui X.H., Cruz-Aguado J.A., Chen Y., Zhang Z., Brook M.A., Brennan J.D. Properties of human serum albumin entrapped in sol–gel-derived silica bearing covalently tethered sugars // Chem. Mater. 2005. V. 17. № 5. P. 1174–1182. https://doi.org/10.1021/cm048166c
- Wyman J. The dielectric constant of mixtures of ethyl alcohol and water from –5 to 40° // J. Am. Chem. Soc. 1931. V. 53. № 9. P. 3292–3301. https://doi.org/10.1021/ja01360a012
- Tanford C. The hydrophobic effect: Formation of micelles and biological membranes. New York: Wiley-Interscience. 1980.
- Zana R. Aqueous surfactant-alcohol systems: A review // Adv. Colloid Interface Sci. 1995. V. 57. P. 1–64. https://doi.org/10.1016/0001-8686(95)00235-i
- Alexandridis P., Ivanova R., Lindman B. Effect of glycols on the self-assembly of amphiphilic block copolymers in water. 2. Glycol location in the microstructure // Langmuir. 2000. V. 16. № 8. P. 3676–3689. https://doi.org/doi: 10.1021/la9912343
- Sattler K., Hoffmann H. A novel glycol silicate and its interaction with surfactant for the synthesis of mesoporous silicate // Prog. Colloid Polym. Sci. 1999. V. 112. P. 40–44. https://doi.org/10.1007/3-540-48953-3_9
- Brook M. A., Chen Y., Guo K., Zhang Z., Brennan J. D. Sugar-modified silanes: Precursors for silica monoliths // J. Mater. Chem. 2004. V. 14. № 9. P. 1469–1479. https://doi.org/10.1039/B401278J
- Wong M.S., Knowles M.V. Surfactant-templated mesostructured materials: Synthesis and compositional control // Nanoporous materials. Science and Technology / Ed. by Lu G. Q., Zhao X. S. London. Imperial College Press, 2004. P. 125–164.
- Brandhuber D., Torma V., Raab C., Peterlik H., Kulak A., Husing N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity // Chem. Mater. 2005. V. 17. № 16. P. 4262–4271. https://doi.org/10.1021/cm048483j
- Husing N., Brandhuber D., Kaiser P. Glycol-modified organosilanes in the synthesis of inorganic-organic silsesquioxane and silica monoliths // J. Sol-Gel Sci. Techn. 2006. V. 40. № 2–3. P. 131–139. https://doi.org/10.1007/s10971-006-8802-z
- Takahashi S., Ikkai Y., Rodriguez-Abreu C., Aramaki K., Ohsuna T., Sakamoto K. Application of a water soluble alkoxysilane for the formation of mesoporous silica from nonionic surfactant micelles bearing cholesterol // Chem. Lett. 2007. V. 36. № 1. P. 182–183. https://doi.org/10.1246/cl.2007.182
- Shchipunov Y., Postnova I. Cellulose mineralization as a route for novel functional materials // Adv. Funct. Mater. 2018. V. 28. № 27. P. 1705042. https://doi.org/10.1002/adfm.201705042
- Attard G.S., Glyde J.C., Göltner C.G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica // Nature. 1995. V. 378. № 6555. P. 366–368. https://doi.org/10.1038/378366a0
- Wang G. H., Zhang L.M. A biofriendly silica gel for in situ protein entrapment: Biopolymer-assisted formation and its kinetic mechanism // J. Phys. Chem. C. 2009. V. 113. № 9. P. 2688–2694. https://doi.org/10.1021/jp810736v
- Bravo-Flores I., Melendez-Zamudio M., Guerra-Contreras A., Ramirez-Oliva E., Alvarez-Guzman G., Zarraga-Nunez R., Villegas A., Cervantes J. Revisiting the system silanes-polysaccharides: The cases of THEOS-chitosan and MeTHEOS-chitosan // Macromol. Rapid Commun. 2023. V. 42. P. 2000612. https://doi.org/10.1002/marc.202000612
- Kuznetsova V.P., Belogolovina G.N. Synthesis of hydrohyalkoxysilames and urethans derived from them // J. General Chem. USSR Eng. Transl. 1969. V. 39. № 3. P. 515–517.
- Alexandridis P., Holmqvist P., Lindman B. Poly(ethylene oxide)-containing amphiphilic block copolymers in ternary mixtures with water and organic solvent: effect of copolymer and solvent type on phase behavior and structure // Colloid Surf. A. 1997. V. 129–130. P. 3–21.
- Ivanova R., Lindman B., Alexandridis P. Effect of glycols on the self-assembly of amphiphilic block copolymers in water. 1. Phase diagrams and structure identification // Langmuir. 2000. V. 16. № 8. P. 3660–3675. https://doi.org/doi: 10.1021/la991235v
- Shchipunov Y.A., Karpenko T.Y., Bakunina I.Y., Burtseva Y., Zvyagintseva T.N. A new precursor for the Immobilization of enzymes inside sol–gel derived hybrid silica nanocomposites containing polysaccharides // J. Biochem. Biophys. Methods. 2004. V. 58. № 1. P. 25–38. https://doi.org/10.1016/S0165-022X(03)00108-8
- Shchipunov Y.A., Burtseva Y.V., Karpenko T.Y., Shevchenko N.M., Zvyagintseva T.N. Highly efficient immobilization of endo-1,3- β-d-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide/silica nanocomposites with regulated composition // J. Mol. Catal. B. Enzym. 2006. V. 40. № 1–2. P. 16–23. https://doi.org/10.1016/j.molcatb.2006.02.002
- Бакунина И.Ю., Недашковская О.И., Звягинцева Т.Н. Иммобилизация α-галактозидазы в гибридных нанокомпозитах, содержащих полисахариды // ЖПХ 2006. Т. 79. № 5. С. 839–844.
- Постнова И.В., Chen L.J., Щипунов Ю.А. Одностадийный синтез монолитного макропористого полиметилсилсесквиоксана, абсорбирующего нефть // Коллоид. журн. 2015. Т. 77. № 2. С. 262–264. https://doi.org/10.7868/S0023291215020147
- Shchipunov Y.A. Sol–gel derived biomaterials of silica and carrageenans // J. Colloid Interface Sci. 2003. V. 268. № 1. P. 68–76. https://doi.org/10.1016/s0021-9797(03)00457-0
- Постнова И.В., Chen L.J., Щипунов Ю.А. Синтез монолитного мезопористого силиката с регулярной структурой (SBA-15) и макропрами в нейтральном водном растворе при комнатной температуре // Коллоид. журн. 2013. Т. 75. № 2. С. 255–257. https://doi.org/10.7868/S0023291213020146
- Iler R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surfaces Properties, and Biochemistry. New York: Wiley. 1979.
- Corriu R., Anh N.T. Molecular chemistry of sol–gel derived nanomaterials. 2009.
- Hoffmann H., Meyer M., Zeitler I. Control of morphology inside the mesoporous gel-structure in silica-gels // Colloid Surf. A. 2006. V. 291. № 1–3. P. 117–127. https://doi.org/10.1016/j.colsurfa.2006.07.032
- Щипунов Ю.А., Крекотень А.В., Петухова М.В. Люминесцентный нанокомпозитный материал, синтезированный золь–гель методом в мицеллярном растворе алкилполиглюкозида с солюбилизированным люминолом // Коллоид. журн. 2008. Т. 70. № 6. С. 855–862. https://doi.org/10.1134/S1061933X08060185
- Postnova I., Bezverbny A., Golik S., Kulchin Y., Li H., Wang J., Kim I., Ha C.S., Shchipunov Y. Tailored hybrid hyperbranched polyglycidol-silica nanocomposites with high third-order nonlinearity // Int. Nano Lett. 2012. V. 2. № 1. P. 13–17. https://doi.org/10.1186/2228-5326-2-13
- Ciesla U., Schuth F. Ordered mesoporous materials // Micropor. Mesopor. Mater. 1999. V. 27. № 2–3. P. 131–149.
- Soler-Illia G. J.A.A., Sanchez C., Lebeau B., Patarin J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures // Chem. Rev. 2002. V. 102. № 11. P. 4093–4138. https://doi.org/10.1021/cr0200062
- Wan Y., Zhao D.Y. On the controllable soft-templating approach to mesoporous silicates // Chem. Rev. 2007. V. 107. № 7. P. 2821–2860. https://doi.org/10.1021/cr068020s
- Chircov C., Spoiala A., Paun C., Craciun L., Ficai D., Ficai A., Andronescu E., Turculet L.C. Mesoporous silica platforms with potential applications in release and adsorption of active agents // Molecules. 2020. V. 25. № 17. P. 3814. https://doi.org/10.3390/molecules25173814
- Meyer M., Fischer A., Hoffmann H. Novel ringing silica gel that do not shrink // J. Phys. Chem. B. 2002. V. 106. № 7. P. 1528–1533. https://doi.org/10.1021/jp013371q
- Husing N., Raab C., Torma V., Roig A., Peterlik H. Periodically mesostructured silica monoliths from diol-modified silanes // Chem. Mater. 2003. V. 15. № 14. P. 2690–2692. https://doi.org/doi: 10.1021/cm034036c
- Shchipunov Y., Postnova I., Sarin S. Bimodal SBA-15 and polymethylsilsesquioxane monoliths with regulated mesoporous structure and macroporosity // Colloid Polym Sci. 2015. V. 293. № 11. P. 3369–3380. https://doi.org/10.1007/s00396-015-3745-y
- Сергеева К.М., Постнова И.В., Щипунов Ю.А. Включение квантовых точек в силикатную матрицу с помощью совместимого прекурсора // Коллоид. журн. 2013. Т. 75. № 6. С. 779–765. https://doi.org/10.7868/S0023291213060153
- Proschenko D., Mayor A., Bukin O., Golik S., Chekhlenok A., Postnova I., Shchipunov Y.A., Kulchin Y. Interaction of the femtosecond laser pulses with the new silica nanocomposites containing Au and CdS // Adv. Mat. Res. 2014. V. 835–836. № 1. P. 60–63. https://doi.org/10.4028/www.scientific.net/AMR.834-836.60
- Nakamura T., Yamada H., Yamada Y., Gurtanyel A., Hartmann S., Husing N., Yano K. New strategy using glycol-modified silane to synthesize monodispersed mesoporous silica spheres applicable to colloidal photonic crystals // Langmuir. 2009. V. 26. № 3. P. 2002–2007. https://doi.org/doi: 10.1021/la902498p
- Постнова И.В., Chen L.J., Щипунов Ю.А. Формирование макропор в бимодальном силикате, синтезированном на темплате из блочного сополимера Р123 // Коллоид. журн. 2019. Т. 81. № 2. С. 224–231. https://doi.org/10.1134/S0023291219020137
- Kohler J., Feinle A., Waitzinger M., Husing N. Glycol-modified silanes as versatile precursors in the synthesis of thin periodically organized silica films // J. Sol-Gel Sci. Techn. 2009. V. 51. № 3. P. 256–263. https://doi.org/10.1007/s10971-009-1947-9
- Postnova I., Sarin S., Silant’ev V., Shchipunov Y. Evolution of block copolymer template structure during the synthesis of ordered mesoporous silica // Colloid Polym. Sci. 2017. V. 295. № 4. P. 549–554. https://doi.org/10.1007/s00396-017-4043-7
- Sergeev A.A., Voznesensky S.S., Galkina A.N., Kuznetsova Y.V., Popov I.D., Rempel A.A., Postnova I.V., Shchipunov Y.A. Nanocomposites based on CdS quantum dots for laser control devices // Solid State Phenomena. 2016. V. 245. № 1. P. 67–71. https://doi.org/10.4028/www.scientific.net/SSP.245.67
- Postnova I., Voznesenskiy S., Sergeev A., Galkina A., Kulchin Y., Shchipunov Y. Photonic materials prepared through the entrapment of quantum dots into silica // Colloid Surf. A. 2018. V. 536. P. 3–9. https://doi.org/10.1016/j.colsurfa.2017.09.020
- Postnova I., Shchipunov Y. Tannic acid as a versatile template for silica monoliths engineering with catalytic gold and silver nanoparticles // Nanomater. 2022. V. 12. № 23. P. 4320. https://doi.org/10.3390/nano12234320
- Postnova I., Khlebnikov O., Sarin S., Shchipunov Y. Nano/microfibrillated cellulose as a structure-directing template for one-stage synthesis of ladder polysilsesquioxane in diluted aqueous solutions at ambient conditions // ACS Appl. Polym. Mater. 2025. V. 7. № 7. P. 4177–4182. https://doi.org/10.1021/acsapm.4c03776
- Mitra A., Imae T., Shchipunov Y.A. Fibrous silica composite fabricated by the sol–gel processing on aggregates of amino acid surfactant // J. Sol-Gel Sci. Techn. 2005. V. 34. P. 127–130. https://doi.org/10.1007/s10971-005-1331-3
- Voznesensky S.S., Sergeev A.A., Galkina A.N., Kulchin Y., Shchipunov Y., Postnova I.V. Laser-induced photodynamic effects at silica nanocomposite based on cadmium sulphide quantum dots // Opt. Express. 2014. V. 22. № 2. P. 2105–2110. https://doi.org/10.1364/OE.22.002105
- Postnova I., Silantev V., Kim M.H., Song G.Y., Kim I., Ha C.S., Shchipunov Y. Hyperbranched polyglycerol hydrogels prepared through biomimetic mineralization // Colloid Surf. B. 2013. V. 103. P. 31–37. https://doi.org/doi: 10.1016/j.colsurfb.2012.10.026
- Proschenko D., Mayor A., Bukin O., Golik S., Postnova I., Shchipunov Y., Kulchin Y. Determination of nonlinear refractive index and two-photon absorption coefficients of new nanocomposite materials based on biosilicates using Z-scan method // Adv. Mat. Res. 2014. V. 1025–1026. P. 776–781. https://doi.org/10.4028/www.scientific.net/AMR.1025-1026.776
Supplementary files


