MATHEMATICAL DESCRIPTION OF JANUS PARTICLES AND A GENERALIZATION OF THE PLATEAU HYPOTHESIS OF THE STANDARD DOUBLE BUBBLE
- Authors: Fedoseev V.B1
-
Affiliations:
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
- Issue: Vol 87, No 6 (2025)
- Pages: 846–855
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376462
- DOI: https://doi.org/10.7868/S3034543X25060156
- ID: 376462
Cite item
Abstract
Janus particles are one of the forms of existence of heterogeneous micro- and nanoparticles. A convenient mathematical prototype of Janus particles is the double bubble described by Plateau when solving the problem of minimal surfaces. The main difference between a double bubble and a Janus particle is the additional condition that the interphase boundaries can have different elastic properties. The solution for this case is obtained using Young's method. The limits of its existence are indicated. The dependence of the configuration of Janus particles on the ratio of surface properties and the volumes that form them is demonstrated.
About the authors
V. B Fedoseev
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: vbfedoseev@yandex.ru
Nizhny Novgorod, Russia
References
- Marschelke C., Fery A., Synytska A. Janus particles: from concepts to environmentally friendly materials and sustainable applications // Colloid Polym. Sci. 2020. V. 298. № 7. P. 841-865. https://doi.org/10.1007/s00396-020-04601- y
- Хлебцов Б.Н. Функциональные наночастицы: синтез и практические применения // Коллоид. журн. 2023. Т. 85. № 4. P. 399-402. https://doi.org/10.31857/s0023291223600426
- Лернер М.И., Бакина О.В., Казанцев С.О. и др. Бикомпонентные серебросодержащие наночастицы: связь морфологии и электрокинетического потенциала // Коллоид. журн. 2023. Т. 85. № 4. P. 443-452. https://doi.org/10.31857/s002329122360030x
- Guisbiers G., Khanal S., Ruiz-Zepeda F., et al. Cu-Ni nano-alloy: Mixed, core-shell or Janus nano-particle? // Nanoscale. 2014. V. 6. № 24. P. 14630-14635. https://doi.org/10.1039/c4nr05739b
- Taranovskyy A., Tomán J.J., Gajdics B.D., Erdélyi Z. 3D phase diagrams and the thermal stability of two-component Janus nanoparticles: effects of size, average composition and temperature // Phys. Chem. Chem. Phys. 2021. V. 23. № 10. P. 6116-6127. https://doi.org/10.1039/d0cp06695h
- Wautellet M., Shirinyan A.S. Phase transitions in binary alloys: nanoparticles and nanowires // Arch. Metall. Mater. 2006. V. 51. № 4. P. 539-545.
- Plateau J. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires // Gauthier-Villars, Paris. 1873.
- Hutchings M., Morgan M., Ritore F. Proof of the double bubble conjecture // Ann. Math. 2002. V. 155. № 2. P. 459-489. https://doi.org/10.2307/3062123
- Hutchings M., Morgan F., Ritore M., Ros A. Proof of the double bubble conjecture // Electron. Res. Announc. Am. Math. Soc. 2000. V. 6. № 6. P. 45-49. https://doi.org/10.1090/S1079-6762-00-00079-2
- Taylor J.E. The structure of singularities in soap-bubble-like and soap-film-like minimal surface // Ann. Math. 1976. V. 103. № 3. P. 489-539. https://doi.org/10.2307/1970949
- Сдобняков Н.Ю., Соколов Д.Н., Кульпин Д.А. и др. Исследование проблемы термодинамической устойчивости манжета жидкости между двумя сферическими наночастицами // Конденсированные среды и межфазные границы. 2011. V. 13. № 2. P. 196-202.
- Lawlor G.R. Double bubbles for immiscible fluids in Rn // J. Geom. Anal. 2014. V. 24. № 1. P. 190-204. https://doi.org/10.1007/s12220-012-9333-1
- Bongiovanni E., Di Giosia L., Diaz A., et al. Double bubbles on the real line with log-convex density // Anal. Geom. Metr. Spaces. 2018. V. 6. № 1. P. 64-88. https://doi.org/10.1515/agms-2018-0004
- Фоменко А.Т. Многомерная задача Плато в римановых многообразиях // Математический сборник. 1972. T. 89(131). № 3(11). C. 475-519.
- Young T. III. An essay on the cohesion of fluids // Philos. Trans. R. Soc. London. 1805. V. 95. № 95. P. 65-87. https://doi.org/10.1098/rstl.1805.0005
- Jasper W.J., Anand N. A generalized variational approach for predicting contact angles of sessile nano-droplets on both flat and curved surfaces // J. Mol. Liq. 2019. V. 281. P. 196-203. https://doi.org/10.1016/j.molliq.2019.02.039
- Rickayzen G. Molecular theory of capillarity // Phys. Bull. 1983. V. 34. № 10. P. 437-438.
- Virgilio N., Desjardins P., L'Espérance G., Favis B.D. In situ measure of interfacial tensions in ternary and quaternary immiscible polymer blends demonstrating partial wetting // Macromolecules. 2009. V. 42. № 19. P. 7518-7529. https://doi.org/10.1021/ma9005507
- Федосеев В.Б. Равновесная конфигурация янус-частиц при условии компенсации сил поверхностного натяжения // Письма в журнал технической физики. 2025. V. 51. № 11. P. 22-25. https://doi.org/10.61011/PJTF.2025.11.60483.20293
- Bouar Y. Le, Onera C. An introduction to the stability of nanoparticles // Mech. nano-objects. Les Presses de l'École des Mines de Paris. Paris. 2011. P. 1-27.
- Shirinyan A.S. Two-phase equilibrium states in individual Cu-Ni nanoparticles: size, depletion and hysteresis effects // Beilstein J. Nanotechnol. 2015. V. 6. P. 1811-1820. https://doi.org/10.3762/bjnano.6.185
- Pankaj P., Bhattacharyya S., Chatterjee S. Competition of core-shell and Janus morphology in bimetallic nanoparticles: Insights from a phase-field model // Acta Mater. 2022. V. 233. P. 117933. https://doi.org/10.1016/j.actamat.2022.117933
- Guzowski J., Korczyk P.M., Jakiela S., Garstecki P. The structure and stability of multiple micro-droplets // Soft Matter. 2012. V. 8. N. 27. P. 7269-7278. https://doi.org/10.1039/c2sm25838b
- Torza S., Mason S.G. Three-phase interactions in shear and electrical fields // J. Colloid Interface Sci. 1970. V. 33. N. 1. P. 67-83. https://doi.org/10.1016/0021-9797(70)90073-1
- Nisisako T. Recent advances in microfluidic production of Janus droplets and particles // Curr. Opin. Colloid Interface Sci. 2016. V. 25. P. 1-12. https://doi.org/10.1016/j.cocis.2016.05.003
- Zhang Q., Xu M., Liu X., et al. Fabrication of Janus droplets by evaporation driven liquid-liquid phase separation // Chem. Commun. 2016. V. 52. N. 28. P. 5015-5018. https://doi.org/10.1039/c6cc00249h
- Rekhviashvili S.S., Kishtikova E.V. On the size dependence of a contact angle // Prot. Met. Phys. Chem. Surfaces. 2012. V. 48. P. 402-405. https://doi.org/10.1134/S2070205112040156
- Шишулин А.В., Федосеев В.Б. Размерный эффект при расслаивании твердого раствора Cr-W // Неорганические Материалы. 2018. V. 54. N. 6. P. 574-578. https://doi.org/10.7868/s0002337x18060040
- Tolman R.C. The effect of droplet size on surface tension // J. Chem. Phys. 1949. V. 17. N. 3. P. 333-337. https://doi.org/10.1063/1.1747247
- Nikolov A., Wasan D. Oil lenses on the air-water surface and the validity of Neumann's rule // Adv. Colloid Interface Sci. 2017. V. 244. P. 174-183. https://doi.org/10.1016/j.cis.2016.05.003
- Федосеев В.Б., Максимов М.В. Осциллирующие фазовые превращения раствор-кристалл-раствор в системе состава KCl-NaCl-H2O // Письма в ЖЭТФ. 2015. T. 101. N. 6. C. 424-427. https://doi.org/10.7868/S0370274X15060065
- Федосеев В.Б. Осциллирующие фазовые переходы раствор-газ и раствор-кристалл в каплях растворов с одним кристаллизующимся компонентом // Нелинейная динамика. 2017. V. 13. N. 2. P. 195-206. https://doi.org/10.20537/nd1702004
Supplementary files


