RECENT ADVANCES IN ELECTRORHEOLOGICAL FLUIDS
- Authors: Kuznetsov N.M.1, Chvalun S.N.1,2
-
Affiliations:
- National Research Center "Kurchatov Institute"
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
- Issue: Vol 87, No 6 (2025)
- Pages: 735–778
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376457
- DOI: https://doi.org/10.7868/S3034543X25060109
- ID: 376457
Cite item
Abstract
The review examines research studies in the field of electrorheology in recent years. The main actively developing research areas are presented. The latest achievements in both the development of novel materials and the theoretical description of the effect are summarized. The progress in the field of practical application is considered and original promising applications of the electrorheological effect are noted.
About the authors
N. M. Kuznetsov
National Research Center "Kurchatov Institute"
Email: kyz993@yandex.ru
Moscow, Russia
S. N. Chvalun
National Research Center "Kurchatov Institute"; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of SciencesMoscow, Russia
References
- Winslow W.M. Induced fibration of suspensions // J. Appl. Phys. 1949. V. 20. № 12. P. 1137–1140. https://doi.org/10.1063/1.1698285
- Дейнега Ю.Ф., Виноградов Г.В. Влияние сильных электрических полей на структуру неводных пластичных дисперсных систем // Докл. АН СССР. 1962. Т. 143. № 4. С. 898–901.
- Дейнега Ю.Ф., Виноградов Г.В. О поведении в электрическом поле и устойчивости неводных пластичных дисперсных систем // Докл. АН СССР. 1963. Т. 151. № 4. С. 879–882.
- Deinega Y.F. The electrorheology of dispersed systems // J. Eng. Phys. 1970. V. 18. № 6. P. 679–682. https://doi.org/10.1007/BF00827839
- Deinega Y.F. Hydrocarbon disperse systems in electric fields // Chem. Technol. Fuels Oils. 1982. V. 18. № 12. P. 599–603. https://doi.org/10.1007/BF00725576
- Deinega Y.F., Vinogradov G.V. Electric fields in the rheology of disperse systems // Rheol. Acta. 1984. V. 23. № 6. P. 636–651. https://doi.org/10.1007/BF01438804
- Korobko E.V., Matsepuro A.D. Electrorheology: From its beginning to the present // J. Eng. Phys. Thermophys. 2010. V. 83. № 4. P. 707–714. https://doi.org/10.1007/s10891-010-0402-7
- Shul’man Z.P., Korobko E.V. Study of electrorheological effect during flow of dielectric suspensions in a horizontal coaxially cylindrical capacitor // J. Eng. Phys. 1974. V. 26. № 5. P. 568–571. https://doi.org/10.1007/BF00825995
- Shulman Z.P., Gorodkin R.G., Korobko E.V., et al. The electrorheological effect and its possible uses // J. Nonnewton. Fluid Mech. 1981. V. 8. № 1–2. P. 29–41. https://doi.org/10.1016/0377-0257(81)80003-1
- Шульман З.П., Носов В.М. Вращение непроводящих тел в электрореологических суспензиях / ред. О.Г. Мартыненко. Минск: Наука и техника, 1985. 59 с.
- Korobko E.V., Dreval V.E., Shulman Z.P., et al. Peculiar features in the rheological behavior of electrorheological suspensions // Rheol. Acta. 1994. V. 33. № 2. P. 117–124. https://doi.org/10.1007/BF00366756
- Shulman Z.P., Korobko E.V., Levin M.L., et al. Energy dissipation in electrorheological damping devices // J. Intell. Mater. Syst. Struct. 2006. V. 17. № 4. P. 315–320. https://doi.org/10.1177/1045389X06054580
- Шульман З.П., Дейнега Ю.Ф., Городкин Р.Г., и др. Электрореологический эффект / ред. А.В. Лыков. Минск: Наука и техника, 1972. 176 с.
- Gindin L.G., Vol’pyan A.E. Structure formation in disperse systems in an electric field // Russ. Chem. Rev. 1968. V. 37. № 1. P. 53–60. https://doi.org/10.1070/rc1968v037n01abeh001607
- Lazareva G.G., Korobko E.V., Ragotner M.M., et al. The electrorheological activity of polymer filler-based dielectric suspensions // Kolloid. Zh. 1991. V. 53. № 2. P. 266–271.
- Mokeev A.A., Korobko E.V., Vedernikova L.G. Structural viscosity of electrorheological fluids // J. Nonnewton. Fluid Mech. 1992. V. 42. № 1–2. P. 213–230. https://doi.org/10.1016/0377-0257(92)80010-U
- Коробко Е.В., Белоус Н.Х., Люблинер И.П., Маршак В.А. Электрореологические свойства суспензий углеродных волокон в полиметилсилоксановой жидкости // Коллоид. журн. 2000. Т. 62. № 2. С. 178–182.
- Korobko E.V., Gorodkin R.G., Mardosevich M.I., et al. Peculiarities of showing capillary effects by electrorheological fluids // Int. J. Mod. Phys. B. 2005. V. 19. № 07n09. P. 1388–1394. https://doi.org/10.1142/S0217979205030347
- Murashkevich A.N., Alisienok O.A., Zharskii I.M., et al. Modified titania and titanium-containing composites as fillers exhibiting an electrorheological effect // Inorg. Mater. 2013. V. 49. № 2. P. 165–171. https://doi.org/10.1134/S0020168513020209
- Korobko E.V., Novikova Z.A. Features of the mechanisms of conductivity of the electrorheological fluids with double doped TiO2 particles under external temperature effects // Front. Mater. 2019. V. 6. P. 1–9. https://doi.org/10.3389/fmats.2019.00132
- Нефедова Т.А., Агафонов А.В., Давыдова О.И., и др. Золь-гель синтез гибридного материала диоксид кремния/полипропиленгликоль и электрореологические характеристики его дисперсий в полидиметилсилоксане // Механика композиционных материалов и конструкций. 2006. Т. 12. № 3. С. 391–406.
- Краев А.С., Агафонов А.В., Давыдова О.И., Нефедова Т.А., Трусова Т.А., Захаров А.Г. Золь–гель синтез диоксида титана и гибридного материала диоксид титана/гидроксипропилцеллюлоза и электрореологические характеристики дисперсий на их основе в полидиметилсилоксане // Коллоид. журн. 2007. Т. 69. № 5. P. 661–667. https://doi.org/10.1134/S1061933X07050122
- Агафонов А.В., Нефедова Т.А., Давыдова О.И. Электрореология суспензий мезоструктурированных и мезопористых кремнеземов в полидиметилсилоксане // Коллоид. жуон. 2008. Т. 70. № 5. P. 581–586. https://doi.org/10.1134/S1061933X08050013
- Davydova O.I., Kraev A.S., Redozubov A.A., et al. Effect of polydimethylsiloxane viscosity on the electrorheological activity of dispersions based on it // Russ. J. Phys. Chem. A. 2016. V. 90. № 6. P. 1269–1273. https://doi.org/10.1134/S0036024416060054
- Agafonov A.V., Davydova O.I., Krayev A.S., et al. Unexpected effects of activator molecules’ polarity on the electroreological activity of titanium dioxide nanopowders // J. Phys. Chem. B. 2017. V. 121. № 27. P. 6732–6738. https://doi.org/10.1021/acs.jpcb.7b04131
- Egorysheva A.V., Kraev A.S., Gajtko O.M., et al. High electrorheological effect in Bi1.8Fe1.2SbO7 suspensions // Powder Technol. 2020. V. 360. P. 96–103. https://doi.org/10.1016/j.powtec.2019.10.027
- Kuznetsov N.M., Stolyarova D.Y., Belousov S.I., et al. Halloysite nanotubes: Prospects in electrorheology // Express Polym. Lett. 2018. V. 12. № 11. P. 958–965. https://doi.org/10.3144/expresspolymlett.2018.82
- Kuznetsov N.M., Bakirov A.V., Belousov S.I., et al. Orientation of layered aluminosilicates particles with a high aspect ratio in paraffin under an electric field // Dokl. Phys. 2019. V. 64. № 6. P. 249–252. https://doi.org/10.1134/S1028335819060077
- Kuznetsov N.M., Kovaleva V.V., Zagoskin Y.D., et al. Specific features of the porous polymeric particle composites application as fillers for electrorheological fluids // Nanobiotechnology Rep. 2021. V. 16. № 6. P. 840–846. https://doi.org/10.1134/S2635167621060148
- Kovaleva V.V., Kuznetsov N.M., Istomina A.P., et al. Low-filled suspensions of α-chitin nanorods for electrorheological applications // Carbohydr. Polym. 2022. V. 277. P. 118792. https://doi.org/10.1016/j.carbpol.2021.118792
- Solodukhin E.S., Kuznetsov N.M., Puchkov A.A., et al. The nature of the electrorheological and electrophoretic effects of detonation nanodiamonds suspensions in mineral oil // ChemChemTech. 2022. V. 65. № 10. P. 61–69. https://doi.org/10.6060/ivkkt.20226510.6613
- Kuznetsov N.M., Vdovichenko A.Y., Bakirov A.V., et al. The size effect of faceted detonation nanodiamond particles on electrorheological behavior of suspensions in mineral oil // Diam. Relat. Mater. 2022. V. 125. P. 108967. https://doi.org/10.1016/j.diamond.2022.108967
- Hao T. Electrorheological fluids // Adv. Mater. 2001. V. 13. № 24. P. 1847–1857. https://doi.org/10.1002/1521-4095(200112)13:24<1847::AID-ADMA1847>3.0.CO;2-A
- Ko Y.G., Choi U.S. Negative electrorheological fluids // J. Rheol. 2013. V. 57. № 6. P. 1655–1667. https://doi.org/10.1122/1.4821857
- Agafonov A.V., Kraev A.S., Kusova T.V., et al. Surfactant-switched positive/negative electrorheological effect in tungsten oxide suspensions // Molecules. 2019. V. 24. № 18. P. 3348. https://doi.org/10.3390/molecules24183348
- Kuznetsov N.M., Kovaleva V.V., Belousov S.I., et al. Electrorheological fluids: From historical retrospective to recent trends // Mater. Today Chem. 2022. V. 26. P. 101066. https://doi.org/10.1016/j.mtchem.2022.101066
- Pavlikova E., Plachy T., Urbanek M., et al. Engineering conductivity and performance in electrorheological fluids using a nanosilica grafting approach // ACS Appl. Nano Mater. 2023. V. 6. № 11. P. 9768–9776. https://doi.org/10.1021/acsanm.3c01475
- Chen S., Cheng Y., Zhao Z., et al. Core–shell-structured electrorheological fluid with a polarizability-tunable nanocarbon shell for enhanced stimuli-responsive activity // ACS Appl. Mater. Interfaces. 2023. V. 15. № 29. P. 35741–35749. https://doi.org/10.1021/acsami.3c07133
- Chen S., Kuznetsov N.M., Hou L., et al. Limited electron-dominated electrorheological response with TiO2 buffer layer // Nano Lett. 2025. V. 25. № 14. P. 5591–5598. https://doi.org/10.1021/acs.nanolett.4c05619
- Kang D., Kim C., Jekal S., et al. Synthesis of hollow-structured plate-type titania for electrorheological fluid application and recycling method of core into silica nanoparticle // J. Korea Org. Resour. Recycl. Assoc. 2025. V. 33. № 1. P. 5–16. (in Korean) https://doi.org/https://doi.org/10.17137/korrae.2025.33.1.5
- Thapa K.B., Lee S.Y., Park S.J. Diversified functional applications of flexible metal-organic frameworks // Mater. Today Adv. 2025. V. 26. P. 100588. https://doi.org/10.1016/j.mtadv.2025.100588
- Wang L., Li C., Wang R., et al. The preparation and smart electrorheological behavior of MOF-Ti@PANI core-shell nanoparticles // J. Mol. Liq. 2023. V. 376. P. 121373. https://doi.org/10.1016/j.molliq.2023.121373
- Wang L., Chen L., Yan H., et al. Synthesis and electrorheological behaviour of silica-coated porous metal-organic frameworks // Ceram. Int. 2024. V. 50. № 7. P. 11329–11340. https://doi.org/10.1016/j.ceramint.2024.01.033
- Wang L., Yan H., Chen L., et al. Preparation of a MIL-125/MoS2/SiO2 ternary nanohybrid and its smart electrorheological behavior // ACS Appl. Mater. Interfaces. 2024. V. 16. № 43. P. 59302–59314. https://doi.org/10.1021/acsami.4c12828
- Chong Z., Liyue W., Xiang J., et al. Preparation and electrorheological behavior of rare‐earth La ion doping MIL‐125 nanoparticles // Adv. Eng. Mater. 2024. V. 26. № 23. P. 2401323. https://doi.org/10.1002/adem.202401323
- Lebedeva O., Kultin D., Kustov L. Polymeric ionic liquids: Here, there and everywhere // Eur. Polym. J. 2024. V. 203. P. 112657. https://doi.org/10.1016/j.eurpolymj.2023.112657
- Dong Y., Wang Y., Liu Y., et al. Interfacial polarization and electrorheological effect of homo-poly(ionic liquid) and poly(ionic liquid)-hexyl methacrylate copolymer microsphere particles // Polymer. 2024. V. 299. P. 126970. https://doi.org/10.1016/j.polymer.2024.126970
- Ben H., Du W., Zhao J., et al. Ionic covalent organic frameworks: From synthetic strategies to advanced electro-, photo-, and thermo- energy functionalities // Coord. Chem. Rev. 2024. V. 517. P. 216003. https://doi.org/10.1016/j.ccr.2024.216003
- Ma R., Nie W., Wang Y., et al. Mixed ionic–electronic covalent organic frameworks as a platform for high-performance electro-responsive smart materials // Chem. Mater. 2024. V. 36. № 14. P. 6961–6972. https://doi.org/10.1021/acs.chemmater.4c01052
- Calis-Ismetoglu G., Cevher S.C., Unal H.I. Probing effect of counterions on electric field stimuli responsive behaviours of smart organoboron-based polyelectrolytes // React. Funct. Polym. 2024. V. 201. P. 105947. https://doi.org/10.1016/j.reactfunctpolym.2024.105947
- Cabuk M., Yavuz M., Unal H.I. Effects of promoter and dedoping process on electrorheological response of polyaniline- graft -chitosan copolymer // Mod. Phys. Lett. B. 2025. V. 39. № 5. P. 1–14. https://doi.org/10.1142/S0217984924420077
- Soares J.P., Letichevsky S., Soares B.G. Electrorheological behavior of titania nanoparticles modified with iron (III) oxide // J. Mol. Liq. 2025. V. 429. P. 127632. https://doi.org/10.1016/j.molliq.2025.127632
- Agresti F., Isopi J., Scattareggia Marchese S., et al. Electrorheology of urea-functionalized lathlike goethite particles in silicone oil // Colloids Surf. A: Physicochem. Eng. Asp. 2025. V. 704. P. 135509. https://doi.org/10.1016/j.colsurfa.2024.135509
- Piao S., Kwon S., Choi H. Stimuli-responsive polymer-clay nanocomposites under electric fields // Materials. 2016. V. 9. № 1. P. 52. https://doi.org/10.3390/ma9010052
- Ploehn H.J., Liu C. Quantitative analysis of montmorillonite platelet size by atomic force microscopy // Ind. Eng. Chem. Res. 2006. V. 45. № 21. P. 7025–7034. https://doi.org/10.1021/ie051392r
- Kuznetsov N.M., Shevchenko V.G., Stolyarova D.Y., et al. Dielectric properties of modified montmorillonites suspensions in polydimethylsiloxane // J. Appl. Polym. Sci. 2018. V. 135. № 32. P. 46614. https://doi.org/10.1002/app.46614
- Liu Y., Zhao X., Yin J. Enhanced electro-responsive electrorheological efficiency of polyethylene oxide-intercalated montmorillonite nanocomposite suspension // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 666. P. 131239. https://doi.org/10.1016/j.colsurfa.2023.131239
- Erol O., Karatayeva U., Faul C.F.J. Electrorheological fluids based on porous carboxyl-functionalized polytriphenylamines // ACS Appl. Polym. Mater. 2025. V. 7. № 3. P. 1205–1216. https://doi.org/10.1021/acsapm.4c02469
- Kelbysheva E.S., Danilin A.N., Ezernitskaya M.G., et al. Photoelectrorheological properties of polyimides with sulfo-acid and sodium salt sulfo-acid groups: a comparative study // Eur. Phys. J. Plus. 2023. V. 138. № 8. P. 747. https://doi.org/10.1140/epjp/s13360-023-04383-6
- Jekal S., Choi H., Otgonbayar Z., et al. Comparative study of the electrorheological properties of various halide perovskites // ACS Omega. 2025. V. 10. № 13. P. 13327–13338. https://doi.org/10.1021/acsomega.4c11212
- Kuznetsov N.M., Zagoskin Y.D., Vdovichenko A.Y., et al. Enhanced electrorheological activity of porous chitosan particles // Carbohydr. Polym. 2021. V. 256. P. 117530. https://doi.org/10.1016/j.carbpol.2020.117530
- Kuznetsov N.M., Zakharevich A.A., Vdovichenko A.Y., et al. Highly porous particles of cellulose derivatives for advanced applications // ChemPlusChem. 2024. V. 89. № 12. P. e202400375. https://doi.org/10.1002/cplu.202400375
- Kuznetsov N.M., Kovaleva V.V., Volkov D.A., et al. Porous chitosan particles doped by in situ formed silver nanoparticles: Electrorheological response in silicon oil // Polym. Adv. Technol. 2022. V. 33. № 10. P. 3643–3657. https://doi.org/10.1002/pat.5817
- Kovaleva V.V., Kuznetsov N.M., Zagoskin Y.D., et al. Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology // Cellulose. 2024. V. 31. № 7. P. 4099–4113. https://doi.org/10.1007/s10570-024-05862-4
- Кузнецов Н.М., Ковалева В.В., Вдовиченко А.Ю., Чвалун С.Н. Натуральные электрореологические жидкости на основе частиц целлюлозы в оливковом масле: размерный эффект наполнителя // Коллоид. журн. 2023. Т. 85. № 3. P. 339–349. https://doi.org/10.31857/S0023291223600153
- Fernández-Silva S.D., Delgado M.A., García-Pérez M., et al. Tunable structuring of nanocellulose-based sustainable lubricants by an external electric field // J. Mater. Res. Technol. 2025. V. 34. P. 2828–2835. https://doi.org/10.1016/j.jmrt.2024.12.183
- Wang Y., Zhao X., Li J., et al. Interfacial polarization and electrorheology of suspensions containing monodispersed ellipsoidal poly(ionic liquid) particles // Macromolecules. 2025. V. 58. № 11. P. 5560–5578. https://doi.org/10.1021/acs.macromol.5c00175
- Dolinsky Y., Elperin T. Equilibrium orientation of an ellipsoidal particle inside a dielectric medium with a finite electric conductivity in the external electric field // Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2005. V. 71. № 5. P. 1–10. https://doi.org/10.1103/PhysRevE.71.056611
- Stolyarova D.Y., Kuznetsov N.M., Belousov S.I., et al. Electrorheological behavior of low filled suspensions of highly anisometric montmorillonite particles // J. Appl. Polym. Sci. 2019. V. 136. № 25. P. 47678. https://doi.org/10.1002/app.47678
- Yuan J., Wang Y., Lei Q., et al. Influence of particle size on electrorheological effect of poly(ionic liquid) microsphere suspensions // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 672. P. 131745. https://doi.org/10.1016/j.colsurfa.2023.131745
- Lu Q., Han W.J., Choi H.J. Smart and functional conducting polymers: Application to electrorheological fluids // Molecules. 2018. V. 23. № 11. P. 2854. https://doi.org/10.3390/molecules23112854
- Stejskal J., Sapurina I., Trchová M. Polyaniline nanostructures and the role of aniline oligomers in their formation // Prog. Polym. Sci. 2010. V. 35. № 12. P. 1420–1481. https://doi.org/10.1016/j.progpolymsci.2010.07.006
- Yuan J., Hu X., Zhao X., et al. Electrorheological effect of suspensions of polyaniline nanoparticles with different morphologies // Polymers. 2023. V. 15. № 23. P. 4568. https://doi.org/10.3390/polym15234568
- Allais C., Foot P., Singer R. Morphology-controlled stabilised polyaniline nanoparticles and their electrorheological properties // Polym. Polym. Compos. 2023. V. 31. P. 1–12. https://doi.org/10.1177/09673911231162800
- Liu S., Wei H., Xia M., et al. Enhancing the performance of electrorheological fluids by structure design // J. Colloid Interface Sci. 2024. V. 675. P. 1052–1058. https://doi.org/10.1016/j.jcis.2024.07.061
- Jekal S., Sa M., Chu Y.-R., et al. A study on enhanced electrorheological performance of plate-like materials via percolation gel-like effect // Gels. 2023. V. 9. № 11. P. 891. https://doi.org/10.3390/gels9110891
- Noh J., Jekal S., Kim J., et al. Vivid-colored electrorheological fluids with simultaneous enhancements in color clarity and electro-responsivity // J. Colloid Interface Sci. 2024. V. 657. P. 373–383. https://doi.org/10.1016/j.jcis.2023.11.183
- Lee S., Noh J., Hong S., et al. Dual stimuli-responsive smart fluid of graphene oxide-coated iron oxide/silica core/shell nanoparticles // Chem. Mater. 2016. V. 28. № 8. P. 2624–2633. https://doi.org/10.1021/acs.chemmater.5b04936
- Yoon C.-M., Jang Y., Lee S., et al. Dual electric and magnetic responsivity of multilayered magnetite-embedded core/shell silica/titania nanoparticles with outermost silica shell // J. Mater. Chem. C. 2018. V. 6. № 38. P. 10241–10249. https://doi.org/10.1039/C8TC03677B
- Kim H.M., Kang S.H., Choi H.J. Polyaniline coated ZnFe2O4 microsphere and its electrorheological and magnetorheological response // Colloids Surf. A: Physicochem. Eng. Asp. 2021. V. 626. P. 127079. https://doi.org/10.1016/j.colsurfa.2021.127079
- Kim H.M., Jeong J.Y., Kang S.H., et al. Dual electrorheological and magnetorheological behaviors of poly(N-methyl aniline) coated ZnFe2O4 composite particles // Materials. 2022. V. 15. № 7. P. 2677. https://doi.org/10.3390/ma15072677
- Hong C.H., Jang H.S., Oh S.J., et al. Electric and magnetic field-responsive suspension rheology of core/shell-shaped iron oxide/polyindole microspheres // Korea-Australia Rheol. J. 2023. V. 35. № 2. P. 95–103. https://doi.org/10.1007/s13367-023-00056-z
- Wang S., Kwon Y.K., Choi H.J. Pickering emulsion polymerized poly(N-methylaniline)/Fe3O4 nanocomposite particles and their dual electrorheological and magnetorheological responses // Eur. Polym. J. 2025. V. 232. № 5. P. 113955. https://doi.org/10.1016/j.eurpolymj.2025.113955
- Jeong J.Y., Kim S., Baek E., et al. Suspension rheology of polyaniline coated manganese ferrite particles under electric/magnetic fields // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 656. P. 130438. https://doi.org/10.1016/j.colsurfa.2022.130438
- Gwon H., Kim H., Lee S. Gadolinium oxide-decorated graphene oxide-based dual-stimuli-responsive smart fluids // Nanoscale. 2025. V. 17. № 10. P. 5869–5877. https://doi.org/10.1039/D4NR04941A
- Anitas E.M., Munteanu A., Sedlacik M., et al. Magnetic and electric effects in magnetorheological suspensions based on silicone oil and polypyrrole nanotubes decorated with magnetite nanoparticles // Results Phys. 2024. V. 61. P. 107768. https://doi.org/10.1016/j.rinp.2024.107768
- Bica I., Anitas E.M., Gavrilovici A.M., et al. Tunable electrical conductivity of nickel-polypyrrole microparticle suspensions under electric and magnetic fields // J. Mater. Chem. C. 2025. V. 13. № 31. P. 15997–16005. https://doi.org/10.1039/D5TC01039J
- Sim B., Chae H.S., Choi H.J. Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields // Express Polym. Lett. 2015. V. 9. № 8. P. 736–743. https://doi.org/10.3144/expresspolymlett.2015.68
- Park D.E., Chae H.S., Choi H.J., et al. Magnetite-polypyrrole core-shell structured microspheres and their dual stimuli-response under electric and magnetic fields // J. Mater. Chem. C. 2015. V. 3. № 13. P. 3150–3158. https://doi.org/10.1039/c5tc00007f
- Zhang W.L., Tian Y., Liu Y.D., et al. Large scale and facile sonochemical synthesis of magnetic graphene oxide nanocomposites and their dual electro/magneto-stimuli responses // RSC Adv. 2016. V. 6. № 81. P. 77925–77930. https://doi.org/10.1039/C6RA12985D
- Kim J.N., Dong Y.Z., Choi H.J. Pickering emulsion polymerized polyaniline/zinc-ferrite composite particles and their dual electrorheological and magnetorheological responses // ACS Omega. 2020. V. 5. № 13. P. 7675–7682. https://doi.org/10.1021/acsomega.0c00585
- Lu Q., Jin H.-J., Choi H.J. Pickering emulsion polymerized Fe3O4@graphene oxide-polystyrene composite particles and their electro/magnetorheological responses // J. Mol. Liq. 2022. V. 365. P. 120083. https://doi.org/10.1016/j.molliq.2022.120083
- Ruzicka M. Electrorheological fluids: Modeling and mathematical theory. Berlin: Springer-Verlag Berlin Heidelberg, 2000. 38 p.
- Parthasarathy M., Klingenberg D.J. Electrorheology: Mechanisms and models // Mater. Sci. Eng. R Reports. 1996. V. 17. № 2. P. 57–103. https://doi.org/10.1016/0927-796X(96)00191-X
- Liang Y., Huang D., Zhou X., et al. Efficient electrorheological technology for materials, energy, and mechanical engineering: From mechanisms to applications // Engineering. 2023. V. 24. P. 151–171. https://doi.org/10.1016/j.eng.2022.01.014
- Li X., Li C., Gao X., et al. Like-charge attraction between two identical dielectric spheres in a uniform electric field: a theoretical study via a multiple-image method and an effective-dipole approach // J. Mater. Chem. A. 2024. V. 12. № 12. P. 6896–6905. https://doi.org/10.1039/D3TA07945G
- Das D., Saintillan D. On the absence of collective motion in a bulk suspension of spontaneously rotating dielectric particles // Soft Matter. 2023. V. 19. № 35. P. 6825–6837. https://doi.org/10.1039/D3SM00298E
- Mester S., Horváth B., Szalai I. Polarizabilities and electric field-induced forces in periodic two-component linear dielectric sphere chains // J. Mol. Liq. 2023. V. 370. P. 120939. https://doi.org/10.1016/j.molliq.2022.120939
- Kach J.I., Walker L.M., Khair A.S. Nonequilibrium structure formation in electrohydrodynamic emulsions // Soft Matter. 2023. V. 19. № 47. P. 9179–9194. https://doi.org/10.1039/D3SM01110K
- Haque M.A., Maestas J.R., Zhu X., et al. High-density and well-aligned hierarchical structures of colloids assembled under orthogonal magnetic and electric fields // ACS Nano. 2025. V. 19. № 1. P. 760–770. https://doi.org/10.1021/acsnano.4c11957
- Bhattacharya A., Chakraborty S. Modulating the selective enrichment and depletion of ions using electrorheological fluids in variable-area microchannels // Langmuir. 2025. V. 41. № 4. P. 2347–2363. https://doi.org/10.1021/acs.langmuir.4c04011
- Chaudhary I., Kaushal M. Pure elongation flow of an electrorheological fluid: insights on wall slip from electrorheology // Soft Matter. 2024. V. 20. № 15. P. 3313–3321. https://doi.org/10.1039/D3SM01448G
- Saffari P.R., Ismail S.O., Thongchom C., et al. Effect of magnetic field on vibration of electrorheological fluid nanoplates with FG-CNTRC layers // J. Vib. Eng. Technol. 2024. V. 12. № 3. P. 3335–3354. https://doi.org/10.1007/s42417-023-01048-7
- Khorshidi K., Soltannia B., Karimi M., et al. Nonlinear vibration of electro-rheological sandwich plates, coupled to quiescent fluid // Ocean Eng. 2023. V. 271. P. 113730. https://doi.org/10.1016/j.oceaneng.2023.113730
- Salunkhe H., Thikane S., Kolekar A. Electrorheological fluids: Mathematical theory and physics // Math. Eng. Sci. Aerosp. 2023. V. 14. № 3. P. 649–659. https://doi.org/10.15680/IJIRSET.2023.1205140
- Chung P.S., Jhon M.S., Choi H.J. A universal yield stress equation for electrorheological fluids // Phys. Fluids. 2024. V. 36. № 8. P. 083329. https://doi.org/10.1063/5.0210728
- Science and technology of electrorheological materials // Progress in Electrorheology / ed. Havelka K.O., Filisko F.E. New York: Springer Science+Business Media, LLC, 1995. 372 p. https://doi.org/10.1007/978-1-4899-1036-3
- Dong Y.Z., Seo Y., Choi H.J. Recent development of electro-responsive smart electrorheological fluids // Soft Matter. 2019. V. 15. № 17. P. 3473–3486. https://doi.org/10.1039/C9SM00210C
- Zhang C., Zhang J., Kang J., et al. Electrorheological effects of waxy crude oils under high-voltage AC electric field // Fuel. 2023. V. 340. P. 127494. https://doi.org/10.1016/j.fuel.2023.127494
- Xie Y.-W., Li H.-Y., Zhang C.-Y., et al. A further investigation to mechanism of the electrorheological effect of waxy oils: Behaviors of charged particles under electric field // Pet. Sci. 2023. V. 20. № 2. P. 1247–1254. https://doi.org/10.1016/j.petsci.2022.08.022
- Wang H., Lu Y. Significant reduction of the viscosity of waxy model oils by DC electric field // Geoenergy Sci. Eng. 2025. V. 251. P. 213905. https://doi.org/10.1016/j.geoen.2025.213905
- Fernández-Silva S.D., Delgado M.Á., Roman C., et al. Active control of friction in electrified ball bearing prototypes using electro-sensitive clay mineral-based lubricating fluids // Friction. 2025. V. 13. № 5. P. 9441023. https://doi.org/10.26599/FRICT.2025.9441023
- Sun H., Hu X., Zhao X., et al. Hollow poly(ionic liquid)/α-Al2O3 composite particles prepared by microwave-assisted Pickering emulsion polymerization and their electrorheological polishing property // ACS Appl. Polym. Mater. 2023. V. 5. № 8. P. 6412–6420. https://doi.org/10.1021/acsapm.3c01001
- Kęsy Z., Musiałek I., Choi S.-B. Design optimization of a hydrodynamic brake with an electrorheological fluid // Appl. Sci. 2023. V. 13. № 2. P. 1089. https://doi.org/10.3390/app13021089
- Cao X., Zhao J., Mao L., et al. Investigation of a 2-DOF GER fluid damper in cut mode // Int. J. Mech. Sci. 2024. V. 274. P. 109258. https://doi.org/10.1016/j.ijmecsci.2024.109258
- Cao X., Zhao J., Sun Z., et al. Investigation of a GER damper using the cut submode for vibration suppression in rotor systems with transmission shafts // Sci. China Technol. Sci. 2025. V. 68. № 5. P. 1–13. https://doi.org/10.1007/s11431-024-2868-3
- Kuznetsov N.M., Banin E.P., Krupnin A.E., et al. Electroresponsive materials for soft robotics // Nanobiotechnology Rep. 2023. V. 18. № 2. P. 189–206. https://doi.org/10.1134/S2635167623700039
- Pan Y., Liu X.-J., Zhao H. Stretchable and conformable variable stiffness device through an electrorheological fluid // Soft Matter. 2022. V. 18. № 48. P. 9163–9171. https://doi.org/10.1039/D2SM01362B
- Jing H., Hua L., Long F., et al. Variable stiffness and fast-response soft structures based on electrorheological fluids // J. Mater. Chem. C. 2023. V. 11. № 35. P. 11842–11850. https://doi.org/10.1039/D3TC01563G
- Bhattacharyya M., Haridas CP A., Kaushal M., et al. Silylated carbon nanofiber/polydimethylsiloxane based printable electrorheological and sensor inks for flexible electronics // Small Methods. 2025. V. 9. № 7. P. 1–13. https://doi.org/10.1002/smtd.202401741
- Sadi F., Holthausen J., Stallkamp J., et al. Development of novel hydraulic 3D printed actuator using electrorheological fluid for robotic endoscopy // Actuators. 2024. V. 13. № 4. P. 119. https://doi.org/10.3390/act13040119
- Rijo P.C., Galindo-Rosales F.J. Electrorheological characterization of complex fluids used in electrohydrodynamic processes: Technical issues and challenges // Appl. Rheol. 2024. V. 34. № 1. P. 20240024. https://doi.org/10.1515/arh-2024-0024
- Munteanu L., Munteanu A., Sedlacik M. Electrorheological fluids: A living review // Prog. Mater. Sci. 2025. V. 151. № 10. P. 101421. https://doi.org/10.1016/j.pmatsci.2024.101421
- Wang Y., Ma R., Nie W., et al. Enhanced electrorheological performance of core–shell-structured polymerized ionic liquid@doubly polymerized ionic liquid microspheres prepared via evaporation-assisted dispersion polymerization // Langmuir. 2023. V. 39. № 39. P. 14006–14014. https://doi.org/10.1021/acs.langmuir.3c01745
Supplementary files


