RECENT ADVANCES IN ELECTRORHEOLOGICAL FLUIDS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review examines research studies in the field of electrorheology in recent years. The main actively developing research areas are presented. The latest achievements in both the development of novel materials and the theoretical description of the effect are summarized. The progress in the field of practical application is considered and original promising applications of the electrorheological effect are noted.

About the authors

N. M. Kuznetsov

National Research Center "Kurchatov Institute"

Email: kyz993@yandex.ru
Moscow, Russia

S. N. Chvalun

National Research Center "Kurchatov Institute"; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Moscow, Russia

References

  1. Winslow W.M. Induced fibration of suspensions // J. Appl. Phys. 1949. V. 20. № 12. P. 1137–1140. https://doi.org/10.1063/1.1698285
  2. Дейнега Ю.Ф., Виноградов Г.В. Влияние сильных электрических полей на структуру неводных пластичных дисперсных систем // Докл. АН СССР. 1962. Т. 143. № 4. С. 898–901.
  3. Дейнега Ю.Ф., Виноградов Г.В. О поведении в электрическом поле и устойчивости неводных пластичных дисперсных систем // Докл. АН СССР. 1963. Т. 151. № 4. С. 879–882.
  4. Deinega Y.F. The electrorheology of dispersed systems // J. Eng. Phys. 1970. V. 18. № 6. P. 679–682. https://doi.org/10.1007/BF00827839
  5. Deinega Y.F. Hydrocarbon disperse systems in electric fields // Chem. Technol. Fuels Oils. 1982. V. 18. № 12. P. 599–603. https://doi.org/10.1007/BF00725576
  6. Deinega Y.F., Vinogradov G.V. Electric fields in the rheology of disperse systems // Rheol. Acta. 1984. V. 23. № 6. P. 636–651. https://doi.org/10.1007/BF01438804
  7. Korobko E.V., Matsepuro A.D. Electrorheology: From its beginning to the present // J. Eng. Phys. Thermophys. 2010. V. 83. № 4. P. 707–714. https://doi.org/10.1007/s10891-010-0402-7
  8. Shul’man Z.P., Korobko E.V. Study of electrorheological effect during flow of dielectric suspensions in a horizontal coaxially cylindrical capacitor // J. Eng. Phys. 1974. V. 26. № 5. P. 568–571. https://doi.org/10.1007/BF00825995
  9. Shulman Z.P., Gorodkin R.G., Korobko E.V., et al. The electrorheological effect and its possible uses // J. Nonnewton. Fluid Mech. 1981. V. 8. № 1–2. P. 29–41. https://doi.org/10.1016/0377-0257(81)80003-1
  10. Шульман З.П., Носов В.М. Вращение непроводящих тел в электрореологических суспензиях / ред. О.Г. Мартыненко. Минск: Наука и техника, 1985. 59 с.
  11. Korobko E.V., Dreval V.E., Shulman Z.P., et al. Peculiar features in the rheological behavior of electrorheological suspensions // Rheol. Acta. 1994. V. 33. № 2. P. 117–124. https://doi.org/10.1007/BF00366756
  12. Shulman Z.P., Korobko E.V., Levin M.L., et al. Energy dissipation in electrorheological damping devices // J. Intell. Mater. Syst. Struct. 2006. V. 17. № 4. P. 315–320. https://doi.org/10.1177/1045389X06054580
  13. Шульман З.П., Дейнега Ю.Ф., Городкин Р.Г., и др. Электрореологический эффект / ред. А.В. Лыков. Минск: Наука и техника, 1972. 176 с.
  14. Gindin L.G., Vol’pyan A.E. Structure formation in disperse systems in an electric field // Russ. Chem. Rev. 1968. V. 37. № 1. P. 53–60. https://doi.org/10.1070/rc1968v037n01abeh001607
  15. Lazareva G.G., Korobko E.V., Ragotner M.M., et al. The electrorheological activity of polymer filler-based dielectric suspensions // Kolloid. Zh. 1991. V. 53. № 2. P. 266–271.
  16. Mokeev A.A., Korobko E.V., Vedernikova L.G. Structural viscosity of electrorheological fluids // J. Nonnewton. Fluid Mech. 1992. V. 42. № 1–2. P. 213–230. https://doi.org/10.1016/0377-0257(92)80010-U
  17. Коробко Е.В., Белоус Н.Х., Люблинер И.П., Маршак В.А. Электрореологические свойства суспензий углеродных волокон в полиметилсилоксановой жидкости // Коллоид. журн. 2000. Т. 62. № 2. С. 178–182.
  18. Korobko E.V., Gorodkin R.G., Mardosevich M.I., et al. Peculiarities of showing capillary effects by electrorheological fluids // Int. J. Mod. Phys. B. 2005. V. 19. № 07n09. P. 1388–1394. https://doi.org/10.1142/S0217979205030347
  19. Murashkevich A.N., Alisienok O.A., Zharskii I.M., et al. Modified titania and titanium-containing composites as fillers exhibiting an electrorheological effect // Inorg. Mater. 2013. V. 49. № 2. P. 165–171. https://doi.org/10.1134/S0020168513020209
  20. Korobko E.V., Novikova Z.A. Features of the mechanisms of conductivity of the electrorheological fluids with double doped TiO2 particles under external temperature effects // Front. Mater. 2019. V. 6. P. 1–9. https://doi.org/10.3389/fmats.2019.00132
  21. Нефедова Т.А., Агафонов А.В., Давыдова О.И., и др. Золь-гель синтез гибридного материала диоксид кремния/полипропиленгликоль и электрореологические характеристики его дисперсий в полидиметилсилоксане // Механика композиционных материалов и конструкций. 2006. Т. 12. № 3. С. 391–406.
  22. Краев А.С., Агафонов А.В., Давыдова О.И., Нефедова Т.А., Трусова Т.А., Захаров А.Г. Золь–гель синтез диоксида титана и гибридного материала диоксид титана/гидроксипропилцеллюлоза и электрореологические характеристики дисперсий на их основе в полидиметилсилоксане // Коллоид. журн. 2007. Т. 69. № 5. P. 661–667. https://doi.org/10.1134/S1061933X07050122
  23. Агафонов А.В., Нефедова Т.А., Давыдова О.И. Электрореология суспензий мезоструктурированных и мезопористых кремнеземов в полидиметилсилоксане // Коллоид. жуон. 2008. Т. 70. № 5. P. 581–586. https://doi.org/10.1134/S1061933X08050013
  24. Davydova O.I., Kraev A.S., Redozubov A.A., et al. Effect of polydimethylsiloxane viscosity on the electrorheological activity of dispersions based on it // Russ. J. Phys. Chem. A. 2016. V. 90. № 6. P. 1269–1273. https://doi.org/10.1134/S0036024416060054
  25. Agafonov A.V., Davydova O.I., Krayev A.S., et al. Unexpected effects of activator molecules’ polarity on the electroreological activity of titanium dioxide nanopowders // J. Phys. Chem. B. 2017. V. 121. № 27. P. 6732–6738. https://doi.org/10.1021/acs.jpcb.7b04131
  26. Egorysheva A.V., Kraev A.S., Gajtko O.M., et al. High electrorheological effect in Bi1.8Fe1.2SbO7 suspensions // Powder Technol. 2020. V. 360. P. 96–103. https://doi.org/10.1016/j.powtec.2019.10.027
  27. Kuznetsov N.M., Stolyarova D.Y., Belousov S.I., et al. Halloysite nanotubes: Prospects in electrorheology // Express Polym. Lett. 2018. V. 12. № 11. P. 958–965. https://doi.org/10.3144/expresspolymlett.2018.82
  28. Kuznetsov N.M., Bakirov A.V., Belousov S.I., et al. Orientation of layered aluminosilicates particles with a high aspect ratio in paraffin under an electric field // Dokl. Phys. 2019. V. 64. № 6. P. 249–252. https://doi.org/10.1134/S1028335819060077
  29. Kuznetsov N.M., Kovaleva V.V., Zagoskin Y.D., et al. Specific features of the porous polymeric particle composites application as fillers for electrorheological fluids // Nanobiotechnology Rep. 2021. V. 16. № 6. P. 840–846. https://doi.org/10.1134/S2635167621060148
  30. Kovaleva V.V., Kuznetsov N.M., Istomina A.P., et al. Low-filled suspensions of α-chitin nanorods for electrorheological applications // Carbohydr. Polym. 2022. V. 277. P. 118792. https://doi.org/10.1016/j.carbpol.2021.118792
  31. Solodukhin E.S., Kuznetsov N.M., Puchkov A.A., et al. The nature of the electrorheological and electrophoretic effects of detonation nanodiamonds suspensions in mineral oil // ChemChemTech. 2022. V. 65. № 10. P. 61–69. https://doi.org/10.6060/ivkkt.20226510.6613
  32. Kuznetsov N.M., Vdovichenko A.Y., Bakirov A.V., et al. The size effect of faceted detonation nanodiamond particles on electrorheological behavior of suspensions in mineral oil // Diam. Relat. Mater. 2022. V. 125. P. 108967. https://doi.org/10.1016/j.diamond.2022.108967
  33. Hao T. Electrorheological fluids // Adv. Mater. 2001. V. 13. № 24. P. 1847–1857. https://doi.org/10.1002/1521-4095(200112)13:24<1847::AID-ADMA1847>3.0.CO;2-A
  34. Ko Y.G., Choi U.S. Negative electrorheological fluids // J. Rheol. 2013. V. 57. № 6. P. 1655–1667. https://doi.org/10.1122/1.4821857
  35. Agafonov A.V., Kraev A.S., Kusova T.V., et al. Surfactant-switched positive/negative electrorheological effect in tungsten oxide suspensions // Molecules. 2019. V. 24. № 18. P. 3348. https://doi.org/10.3390/molecules24183348
  36. Kuznetsov N.M., Kovaleva V.V., Belousov S.I., et al. Electrorheological fluids: From historical retrospective to recent trends // Mater. Today Chem. 2022. V. 26. P. 101066. https://doi.org/10.1016/j.mtchem.2022.101066
  37. Pavlikova E., Plachy T., Urbanek M., et al. Engineering conductivity and performance in electrorheological fluids using a nanosilica grafting approach // ACS Appl. Nano Mater. 2023. V. 6. № 11. P. 9768–9776. https://doi.org/10.1021/acsanm.3c01475
  38. Chen S., Cheng Y., Zhao Z., et al. Core–shell-structured electrorheological fluid with a polarizability-tunable nanocarbon shell for enhanced stimuli-responsive activity // ACS Appl. Mater. Interfaces. 2023. V. 15. № 29. P. 35741–35749. https://doi.org/10.1021/acsami.3c07133
  39. Chen S., Kuznetsov N.M., Hou L., et al. Limited electron-dominated electrorheological response with TiO2 buffer layer // Nano Lett. 2025. V. 25. № 14. P. 5591–5598. https://doi.org/10.1021/acs.nanolett.4c05619
  40. Kang D., Kim C., Jekal S., et al. Synthesis of hollow-structured plate-type titania for electrorheological fluid application and recycling method of core into silica nanoparticle // J. Korea Org. Resour. Recycl. Assoc. 2025. V. 33. № 1. P. 5–16. (in Korean) https://doi.org/https://doi.org/10.17137/korrae.2025.33.1.5
  41. Thapa K.B., Lee S.Y., Park S.J. Diversified functional applications of flexible metal-organic frameworks // Mater. Today Adv. 2025. V. 26. P. 100588. https://doi.org/10.1016/j.mtadv.2025.100588
  42. Wang L., Li C., Wang R., et al. The preparation and smart electrorheological behavior of MOF-Ti@PANI core-shell nanoparticles // J. Mol. Liq. 2023. V. 376. P. 121373. https://doi.org/10.1016/j.molliq.2023.121373
  43. Wang L., Chen L., Yan H., et al. Synthesis and electrorheological behaviour of silica-coated porous metal-organic frameworks // Ceram. Int. 2024. V. 50. № 7. P. 11329–11340. https://doi.org/10.1016/j.ceramint.2024.01.033
  44. Wang L., Yan H., Chen L., et al. Preparation of a MIL-125/MoS2/SiO2 ternary nanohybrid and its smart electrorheological behavior // ACS Appl. Mater. Interfaces. 2024. V. 16. № 43. P. 59302–59314. https://doi.org/10.1021/acsami.4c12828
  45. Chong Z., Liyue W., Xiang J., et al. Preparation and electrorheological behavior of rare‐earth La ion doping MIL‐125 nanoparticles // Adv. Eng. Mater. 2024. V. 26. № 23. P. 2401323. https://doi.org/10.1002/adem.202401323
  46. Lebedeva O., Kultin D., Kustov L. Polymeric ionic liquids: Here, there and everywhere // Eur. Polym. J. 2024. V. 203. P. 112657. https://doi.org/10.1016/j.eurpolymj.2023.112657
  47. Dong Y., Wang Y., Liu Y., et al. Interfacial polarization and electrorheological effect of homo-poly(ionic liquid) and poly(ionic liquid)-hexyl methacrylate copolymer microsphere particles // Polymer. 2024. V. 299. P. 126970. https://doi.org/10.1016/j.polymer.2024.126970
  48. Ben H., Du W., Zhao J., et al. Ionic covalent organic frameworks: From synthetic strategies to advanced electro-, photo-, and thermo- energy functionalities // Coord. Chem. Rev. 2024. V. 517. P. 216003. https://doi.org/10.1016/j.ccr.2024.216003
  49. Ma R., Nie W., Wang Y., et al. Mixed ionic–electronic covalent organic frameworks as a platform for high-performance electro-responsive smart materials // Chem. Mater. 2024. V. 36. № 14. P. 6961–6972. https://doi.org/10.1021/acs.chemmater.4c01052
  50. Calis-Ismetoglu G., Cevher S.C., Unal H.I. Probing effect of counterions on electric field stimuli responsive behaviours of smart organoboron-based polyelectrolytes // React. Funct. Polym. 2024. V. 201. P. 105947. https://doi.org/10.1016/j.reactfunctpolym.2024.105947
  51. Cabuk M., Yavuz M., Unal H.I. Effects of promoter and dedoping process on electrorheological response of polyaniline- graft -chitosan copolymer // Mod. Phys. Lett. B. 2025. V. 39. № 5. P. 1–14. https://doi.org/10.1142/S0217984924420077
  52. Soares J.P., Letichevsky S., Soares B.G. Electrorheological behavior of titania nanoparticles modified with iron (III) oxide // J. Mol. Liq. 2025. V. 429. P. 127632. https://doi.org/10.1016/j.molliq.2025.127632
  53. Agresti F., Isopi J., Scattareggia Marchese S., et al. Electrorheology of urea-functionalized lathlike goethite particles in silicone oil // Colloids Surf. A: Physicochem. Eng. Asp. 2025. V. 704. P. 135509. https://doi.org/10.1016/j.colsurfa.2024.135509
  54. Piao S., Kwon S., Choi H. Stimuli-responsive polymer-clay nanocomposites under electric fields // Materials. 2016. V. 9. № 1. P. 52. https://doi.org/10.3390/ma9010052
  55. Ploehn H.J., Liu C. Quantitative analysis of montmorillonite platelet size by atomic force microscopy // Ind. Eng. Chem. Res. 2006. V. 45. № 21. P. 7025–7034. https://doi.org/10.1021/ie051392r
  56. Kuznetsov N.M., Shevchenko V.G., Stolyarova D.Y., et al. Dielectric properties of modified montmorillonites suspensions in polydimethylsiloxane // J. Appl. Polym. Sci. 2018. V. 135. № 32. P. 46614. https://doi.org/10.1002/app.46614
  57. Liu Y., Zhao X., Yin J. Enhanced electro-responsive electrorheological efficiency of polyethylene oxide-intercalated montmorillonite nanocomposite suspension // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 666. P. 131239. https://doi.org/10.1016/j.colsurfa.2023.131239
  58. Erol O., Karatayeva U., Faul C.F.J. Electrorheological fluids based on porous carboxyl-functionalized polytriphenylamines // ACS Appl. Polym. Mater. 2025. V. 7. № 3. P. 1205–1216. https://doi.org/10.1021/acsapm.4c02469
  59. Kelbysheva E.S., Danilin A.N., Ezernitskaya M.G., et al. Photoelectrorheological properties of polyimides with sulfo-acid and sodium salt sulfo-acid groups: a comparative study // Eur. Phys. J. Plus. 2023. V. 138. № 8. P. 747. https://doi.org/10.1140/epjp/s13360-023-04383-6
  60. Jekal S., Choi H., Otgonbayar Z., et al. Comparative study of the electrorheological properties of various halide perovskites // ACS Omega. 2025. V. 10. № 13. P. 13327–13338. https://doi.org/10.1021/acsomega.4c11212
  61. Kuznetsov N.M., Zagoskin Y.D., Vdovichenko A.Y., et al. Enhanced electrorheological activity of porous chitosan particles // Carbohydr. Polym. 2021. V. 256. P. 117530. https://doi.org/10.1016/j.carbpol.2020.117530
  62. Kuznetsov N.M., Zakharevich A.A., Vdovichenko A.Y., et al. Highly porous particles of cellulose derivatives for advanced applications // ChemPlusChem. 2024. V. 89. № 12. P. e202400375. https://doi.org/10.1002/cplu.202400375
  63. Kuznetsov N.M., Kovaleva V.V., Volkov D.A., et al. Porous chitosan particles doped by in situ formed silver nanoparticles: Electrorheological response in silicon oil // Polym. Adv. Technol. 2022. V. 33. № 10. P. 3643–3657. https://doi.org/10.1002/pat.5817
  64. Kovaleva V.V., Kuznetsov N.M., Zagoskin Y.D., et al. Electrorheological behavior of cellulose in silicon oil. The effect of filler morphology // Cellulose. 2024. V. 31. № 7. P. 4099–4113. https://doi.org/10.1007/s10570-024-05862-4
  65. Кузнецов Н.М., Ковалева В.В., Вдовиченко А.Ю., Чвалун С.Н. Натуральные электрореологические жидкости на основе частиц целлюлозы в оливковом масле: размерный эффект наполнителя // Коллоид. журн. 2023. Т. 85. № 3. P. 339–349. https://doi.org/10.31857/S0023291223600153
  66. Fernández-Silva S.D., Delgado M.A., García-Pérez M., et al. Tunable structuring of nanocellulose-based sustainable lubricants by an external electric field // J. Mater. Res. Technol. 2025. V. 34. P. 2828–2835. https://doi.org/10.1016/j.jmrt.2024.12.183
  67. Wang Y., Zhao X., Li J., et al. Interfacial polarization and electrorheology of suspensions containing monodispersed ellipsoidal poly(ionic liquid) particles // Macromolecules. 2025. V. 58. № 11. P. 5560–5578. https://doi.org/10.1021/acs.macromol.5c00175
  68. Dolinsky Y., Elperin T. Equilibrium orientation of an ellipsoidal particle inside a dielectric medium with a finite electric conductivity in the external electric field // Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2005. V. 71. № 5. P. 1–10. https://doi.org/10.1103/PhysRevE.71.056611
  69. Stolyarova D.Y., Kuznetsov N.M., Belousov S.I., et al. Electrorheological behavior of low filled suspensions of highly anisometric montmorillonite particles // J. Appl. Polym. Sci. 2019. V. 136. № 25. P. 47678. https://doi.org/10.1002/app.47678
  70. Yuan J., Wang Y., Lei Q., et al. Influence of particle size on electrorheological effect of poly(ionic liquid) microsphere suspensions // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 672. P. 131745. https://doi.org/10.1016/j.colsurfa.2023.131745
  71. Lu Q., Han W.J., Choi H.J. Smart and functional conducting polymers: Application to electrorheological fluids // Molecules. 2018. V. 23. № 11. P. 2854. https://doi.org/10.3390/molecules23112854
  72. Stejskal J., Sapurina I., Trchová M. Polyaniline nanostructures and the role of aniline oligomers in their formation // Prog. Polym. Sci. 2010. V. 35. № 12. P. 1420–1481. https://doi.org/10.1016/j.progpolymsci.2010.07.006
  73. Yuan J., Hu X., Zhao X., et al. Electrorheological effect of suspensions of polyaniline nanoparticles with different morphologies // Polymers. 2023. V. 15. № 23. P. 4568. https://doi.org/10.3390/polym15234568
  74. Allais C., Foot P., Singer R. Morphology-controlled stabilised polyaniline nanoparticles and their electrorheological properties // Polym. Polym. Compos. 2023. V. 31. P. 1–12. https://doi.org/10.1177/09673911231162800
  75. Liu S., Wei H., Xia M., et al. Enhancing the performance of electrorheological fluids by structure design // J. Colloid Interface Sci. 2024. V. 675. P. 1052–1058. https://doi.org/10.1016/j.jcis.2024.07.061
  76. Jekal S., Sa M., Chu Y.-R., et al. A study on enhanced electrorheological performance of plate-like materials via percolation gel-like effect // Gels. 2023. V. 9. № 11. P. 891. https://doi.org/10.3390/gels9110891
  77. Noh J., Jekal S., Kim J., et al. Vivid-colored electrorheological fluids with simultaneous enhancements in color clarity and electro-responsivity // J. Colloid Interface Sci. 2024. V. 657. P. 373–383. https://doi.org/10.1016/j.jcis.2023.11.183
  78. Lee S., Noh J., Hong S., et al. Dual stimuli-responsive smart fluid of graphene oxide-coated iron oxide/silica core/shell nanoparticles // Chem. Mater. 2016. V. 28. № 8. P. 2624–2633. https://doi.org/10.1021/acs.chemmater.5b04936
  79. Yoon C.-M., Jang Y., Lee S., et al. Dual electric and magnetic responsivity of multilayered magnetite-embedded core/shell silica/titania nanoparticles with outermost silica shell // J. Mater. Chem. C. 2018. V. 6. № 38. P. 10241–10249. https://doi.org/10.1039/C8TC03677B
  80. Kim H.M., Kang S.H., Choi H.J. Polyaniline coated ZnFe2O4 microsphere and its electrorheological and magnetorheological response // Colloids Surf. A: Physicochem. Eng. Asp. 2021. V. 626. P. 127079. https://doi.org/10.1016/j.colsurfa.2021.127079
  81. Kim H.M., Jeong J.Y., Kang S.H., et al. Dual electrorheological and magnetorheological behaviors of poly(N-methyl aniline) coated ZnFe2O4 composite particles // Materials. 2022. V. 15. № 7. P. 2677. https://doi.org/10.3390/ma15072677
  82. Hong C.H., Jang H.S., Oh S.J., et al. Electric and magnetic field-responsive suspension rheology of core/shell-shaped iron oxide/polyindole microspheres // Korea-Australia Rheol. J. 2023. V. 35. № 2. P. 95–103. https://doi.org/10.1007/s13367-023-00056-z
  83. Wang S., Kwon Y.K., Choi H.J. Pickering emulsion polymerized poly(N-methylaniline)/Fe3O4 nanocomposite particles and their dual electrorheological and magnetorheological responses // Eur. Polym. J. 2025. V. 232. № 5. P. 113955. https://doi.org/10.1016/j.eurpolymj.2025.113955
  84. Jeong J.Y., Kim S., Baek E., et al. Suspension rheology of polyaniline coated manganese ferrite particles under electric/magnetic fields // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 656. P. 130438. https://doi.org/10.1016/j.colsurfa.2022.130438
  85. Gwon H., Kim H., Lee S. Gadolinium oxide-decorated graphene oxide-based dual-stimuli-responsive smart fluids // Nanoscale. 2025. V. 17. № 10. P. 5869–5877. https://doi.org/10.1039/D4NR04941A
  86. Anitas E.M., Munteanu A., Sedlacik M., et al. Magnetic and electric effects in magnetorheological suspensions based on silicone oil and polypyrrole nanotubes decorated with magnetite nanoparticles // Results Phys. 2024. V. 61. P. 107768. https://doi.org/10.1016/j.rinp.2024.107768
  87. Bica I., Anitas E.M., Gavrilovici A.M., et al. Tunable electrical conductivity of nickel-polypyrrole microparticle suspensions under electric and magnetic fields // J. Mater. Chem. C. 2025. V. 13. № 31. P. 15997–16005. https://doi.org/10.1039/D5TC01039J
  88. Sim B., Chae H.S., Choi H.J. Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields // Express Polym. Lett. 2015. V. 9. № 8. P. 736–743. https://doi.org/10.3144/expresspolymlett.2015.68
  89. Park D.E., Chae H.S., Choi H.J., et al. Magnetite-polypyrrole core-shell structured microspheres and their dual stimuli-response under electric and magnetic fields // J. Mater. Chem. C. 2015. V. 3. № 13. P. 3150–3158. https://doi.org/10.1039/c5tc00007f
  90. Zhang W.L., Tian Y., Liu Y.D., et al. Large scale and facile sonochemical synthesis of magnetic graphene oxide nanocomposites and their dual electro/magneto-stimuli responses // RSC Adv. 2016. V. 6. № 81. P. 77925–77930. https://doi.org/10.1039/C6RA12985D
  91. Kim J.N., Dong Y.Z., Choi H.J. Pickering emulsion polymerized polyaniline/zinc-ferrite composite particles and their dual electrorheological and magnetorheological responses // ACS Omega. 2020. V. 5. № 13. P. 7675–7682. https://doi.org/10.1021/acsomega.0c00585
  92. Lu Q., Jin H.-J., Choi H.J. Pickering emulsion polymerized Fe3O4@graphene oxide-polystyrene composite particles and their electro/magnetorheological responses // J. Mol. Liq. 2022. V. 365. P. 120083. https://doi.org/10.1016/j.molliq.2022.120083
  93. Ruzicka M. Electrorheological fluids: Modeling and mathematical theory. Berlin: Springer-Verlag Berlin Heidelberg, 2000. 38 p.
  94. Parthasarathy M., Klingenberg D.J. Electrorheology: Mechanisms and models // Mater. Sci. Eng. R Reports. 1996. V. 17. № 2. P. 57–103. https://doi.org/10.1016/0927-796X(96)00191-X
  95. Liang Y., Huang D., Zhou X., et al. Efficient electrorheological technology for materials, energy, and mechanical engineering: From mechanisms to applications // Engineering. 2023. V. 24. P. 151–171. https://doi.org/10.1016/j.eng.2022.01.014
  96. Li X., Li C., Gao X., et al. Like-charge attraction between two identical dielectric spheres in a uniform electric field: a theoretical study via a multiple-image method and an effective-dipole approach // J. Mater. Chem. A. 2024. V. 12. № 12. P. 6896–6905. https://doi.org/10.1039/D3TA07945G
  97. Das D., Saintillan D. On the absence of collective motion in a bulk suspension of spontaneously rotating dielectric particles // Soft Matter. 2023. V. 19. № 35. P. 6825–6837. https://doi.org/10.1039/D3SM00298E
  98. Mester S., Horváth B., Szalai I. Polarizabilities and electric field-induced forces in periodic two-component linear dielectric sphere chains // J. Mol. Liq. 2023. V. 370. P. 120939. https://doi.org/10.1016/j.molliq.2022.120939
  99. Kach J.I., Walker L.M., Khair A.S. Nonequilibrium structure formation in electrohydrodynamic emulsions // Soft Matter. 2023. V. 19. № 47. P. 9179–9194. https://doi.org/10.1039/D3SM01110K
  100. Haque M.A., Maestas J.R., Zhu X., et al. High-density and well-aligned hierarchical structures of colloids assembled under orthogonal magnetic and electric fields // ACS Nano. 2025. V. 19. № 1. P. 760–770. https://doi.org/10.1021/acsnano.4c11957
  101. Bhattacharya A., Chakraborty S. Modulating the selective enrichment and depletion of ions using electrorheological fluids in variable-area microchannels // Langmuir. 2025. V. 41. № 4. P. 2347–2363. https://doi.org/10.1021/acs.langmuir.4c04011
  102. Chaudhary I., Kaushal M. Pure elongation flow of an electrorheological fluid: insights on wall slip from electrorheology // Soft Matter. 2024. V. 20. № 15. P. 3313–3321. https://doi.org/10.1039/D3SM01448G
  103. Saffari P.R., Ismail S.O., Thongchom C., et al. Effect of magnetic field on vibration of electrorheological fluid nanoplates with FG-CNTRC layers // J. Vib. Eng. Technol. 2024. V. 12. № 3. P. 3335–3354. https://doi.org/10.1007/s42417-023-01048-7
  104. Khorshidi K., Soltannia B., Karimi M., et al. Nonlinear vibration of electro-rheological sandwich plates, coupled to quiescent fluid // Ocean Eng. 2023. V. 271. P. 113730. https://doi.org/10.1016/j.oceaneng.2023.113730
  105. Salunkhe H., Thikane S., Kolekar A. Electrorheological fluids: Mathematical theory and physics // Math. Eng. Sci. Aerosp. 2023. V. 14. № 3. P. 649–659. https://doi.org/10.15680/IJIRSET.2023.1205140
  106. Chung P.S., Jhon M.S., Choi H.J. A universal yield stress equation for electrorheological fluids // Phys. Fluids. 2024. V. 36. № 8. P. 083329. https://doi.org/10.1063/5.0210728
  107. Science and technology of electrorheological materials // Progress in Electrorheology / ed. Havelka K.O., Filisko F.E. New York: Springer Science+Business Media, LLC, 1995. 372 p. https://doi.org/10.1007/978-1-4899-1036-3
  108. Dong Y.Z., Seo Y., Choi H.J. Recent development of electro-responsive smart electrorheological fluids // Soft Matter. 2019. V. 15. № 17. P. 3473–3486. https://doi.org/10.1039/C9SM00210C
  109. Zhang C., Zhang J., Kang J., et al. Electrorheological effects of waxy crude oils under high-voltage AC electric field // Fuel. 2023. V. 340. P. 127494. https://doi.org/10.1016/j.fuel.2023.127494
  110. Xie Y.-W., Li H.-Y., Zhang C.-Y., et al. A further investigation to mechanism of the electrorheological effect of waxy oils: Behaviors of charged particles under electric field // Pet. Sci. 2023. V. 20. № 2. P. 1247–1254. https://doi.org/10.1016/j.petsci.2022.08.022
  111. Wang H., Lu Y. Significant reduction of the viscosity of waxy model oils by DC electric field // Geoenergy Sci. Eng. 2025. V. 251. P. 213905. https://doi.org/10.1016/j.geoen.2025.213905
  112. Fernández-Silva S.D., Delgado M.Á., Roman C., et al. Active control of friction in electrified ball bearing prototypes using electro-sensitive clay mineral-based lubricating fluids // Friction. 2025. V. 13. № 5. P. 9441023. https://doi.org/10.26599/FRICT.2025.9441023
  113. Sun H., Hu X., Zhao X., et al. Hollow poly(ionic liquid)/α-Al2O3 composite particles prepared by microwave-assisted Pickering emulsion polymerization and their electrorheological polishing property // ACS Appl. Polym. Mater. 2023. V. 5. № 8. P. 6412–6420. https://doi.org/10.1021/acsapm.3c01001
  114. Kęsy Z., Musiałek I., Choi S.-B. Design optimization of a hydrodynamic brake with an electrorheological fluid // Appl. Sci. 2023. V. 13. № 2. P. 1089. https://doi.org/10.3390/app13021089
  115. Cao X., Zhao J., Mao L., et al. Investigation of a 2-DOF GER fluid damper in cut mode // Int. J. Mech. Sci. 2024. V. 274. P. 109258. https://doi.org/10.1016/j.ijmecsci.2024.109258
  116. Cao X., Zhao J., Sun Z., et al. Investigation of a GER damper using the cut submode for vibration suppression in rotor systems with transmission shafts // Sci. China Technol. Sci. 2025. V. 68. № 5. P. 1–13. https://doi.org/10.1007/s11431-024-2868-3
  117. Kuznetsov N.M., Banin E.P., Krupnin A.E., et al. Electroresponsive materials for soft robotics // Nanobiotechnology Rep. 2023. V. 18. № 2. P. 189–206. https://doi.org/10.1134/S2635167623700039
  118. Pan Y., Liu X.-J., Zhao H. Stretchable and conformable variable stiffness device through an electrorheological fluid // Soft Matter. 2022. V. 18. № 48. P. 9163–9171. https://doi.org/10.1039/D2SM01362B
  119. Jing H., Hua L., Long F., et al. Variable stiffness and fast-response soft structures based on electrorheological fluids // J. Mater. Chem. C. 2023. V. 11. № 35. P. 11842–11850. https://doi.org/10.1039/D3TC01563G
  120. Bhattacharyya M., Haridas CP A., Kaushal M., et al. Silylated carbon nanofiber/polydimethylsiloxane based printable electrorheological and sensor inks for flexible electronics // Small Methods. 2025. V. 9. № 7. P. 1–13. https://doi.org/10.1002/smtd.202401741
  121. Sadi F., Holthausen J., Stallkamp J., et al. Development of novel hydraulic 3D printed actuator using electrorheological fluid for robotic endoscopy // Actuators. 2024. V. 13. № 4. P. 119. https://doi.org/10.3390/act13040119
  122. Rijo P.C., Galindo-Rosales F.J. Electrorheological characterization of complex fluids used in electrohydrodynamic processes: Technical issues and challenges // Appl. Rheol. 2024. V. 34. № 1. P. 20240024. https://doi.org/10.1515/arh-2024-0024
  123. Munteanu L., Munteanu A., Sedlacik M. Electrorheological fluids: A living review // Prog. Mater. Sci. 2025. V. 151. № 10. P. 101421. https://doi.org/10.1016/j.pmatsci.2024.101421
  124. Wang Y., Ma R., Nie W., et al. Enhanced electrorheological performance of core–shell-structured polymerized ionic liquid@doubly polymerized ionic liquid microspheres prepared via evaporation-assisted dispersion polymerization // Langmuir. 2023. V. 39. № 39. P. 14006–14014. https://doi.org/10.1021/acs.langmuir.3c01745

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).