NIOSOMES BASED ON POLYOXYETHYLATED MICELLE-FORMING SURFACTANTS AND CHLORHEXIDINE BASE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A simple condensation method for obtaining a niosomal form of a practically water-insoluble biocide (chlorhexidine base, CHX), which is an effective CHX carrier in an aqueous medium, is proposed and implemented. The approach is based on the solubilization of CHX in micellar aqueous solutions of polyoxyethylated surfactants (Tween 80 and Tween 20) without using organic solvents, high-energy dispersion and a rotary evaporator, which are necessary attributes in the usual practice of obtaining niosomes, and provides a high degree of biocide encapsulation (96 ± 2%). Aqueous dispersions of two-component niosomes (Tween 80 + CHX and Tween 20 + CHX) stable for a long time were obtained. The sizes of niosomes, their structure, solubilization capacity and transport properties relative to CHX were determined. The effect of the hydrocarbon chain length of the surfactant on the sizes and stability of niosomes with incorporated CHX was analyzed. A mechanism for the transformation of micelles of polyoxyethylated surfactants with solubilized CHX into niosomes at a CHX/Surfactant molar ratio of 1/2 is proposed.

About the authors

N. M Zadymova

Lomonosov Moscow State University

Email: nzadymova@gmail.com
Moscow, Russia

S. A Artyushina

Lomonosov Moscow State University

Moscow, Russia

References

  1. Senior N. Some observations on the formulation and properties of chlorhexidine // Soc. Cosmet. Chem. 1973. V. 24. № 4. P. 259–278.
  2. Zeng P., Rao A., Wiedmann T.S., Bowles W. Solubility properties of chlorhexidine salts // Drug Dev. Ind. Pharm. 2009. V. 35. № 2. P. 172–176. https://doi.org/10.1080/03639040802220318
  3. Graham W.D. Chlorhexidine // Disinfection, Sterilization, and Preservation. (Ed. by Block S. S.). Philadelphia: Lippincott Williams and Wilkins. 2001. P. 321–336.
  4. Задымова Н.М., Тао М., Потешнова М.В. Прямые эмульсии Твин 85 с инкорпорированным основанием хлоргексидина // Коллоидн. журн. 2018. Т. 80. № 2. С. 168–176. https://doi.org/10.7868/S0023291218020052
  5. Кардаш Г.Г., Артеманн Ж.-К., Хапкина Е.Н., Герасимов В.Н. Лиотропный жидкий кристалл хлоргексидина основания, антисептическая и дезинфицирующая композиции // Патент RU 2750598 C1. Опубликовано: 29.06.2021. Бюл. № 19
  6. Seleci D.A., Seleci M., Walter J.-G., Stahl F., and Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications // J. Nanomater. 2016. V. 2016. P. 7372306. https://doi.org/10.1155/2016/7372306
  7. Kulkarni P., Hiraskar A.L. Niosomes: a novel drug delivery system // Int. J. Pharm. Sci. Res. 2024. V. 15. № 10. P. 2933–2942. https://doi.org/10.13040/IJPSR.0975-8232.15(10).2933-42
  8. Bartels R., Nematollahi M.H., Pols T., Stuart M.C.A., Pardakhty A., Asadikaram G, et.al. Nosomes, an alternative for liposomal delivery // PLOS ONE. 2018. V. 13. № 4. P. 1–18. https://doi.org/10.1371/journal.pone.0194179
  9. Sharma R., Dua J., and Parsad D. An overview on nosomes: Novel pharmaceutical drug delivery system // JDDT. 2022. V. 12. № 2. 171–177. https://doi.org/10.22270/jddt.v12i2-S.5264
  10. Mawazi S.M., Ge Y., Widodo R.T. Nosome preparation techniques and structure—An illustrated review // Pharmaceuticals. 2025. V. 17. № 1. P. 67. https://doi.org/10.3390/pharmaceutics17010067
  11. Antonara L., Triantafyllopoulou E., Chountoulesi M., Pippa N., Lagopati N., Dallas P.P., Rekkas D.M. and Gazouli M. Recent advances in nosome-based transdermal drug delivery systems // Curr. Opin. Biomed. Eng. 2025. V. 35. P. 100603. https://doi.org/10.1016/j.cobme.2025.100603
  12. Sharma S., Garg A., Agrawal R., Chopra H., Pathak D. A comprehensive review on niosomes as a tool for advanced drug delivery // Pharm. Nanotechnol. 2024. V. 12. № 3. P. 206-228. https://doi.org/10.2174/2211738511666230726154557
  13. Aparajay P., Dev A. Functionalized niosomes as a smart delivery device in cancer and fungal infection // Eur. J. Pharm. Sci. 2022. V. 168. P. 106052. https://doi.org/10.1016/j.ejps.2021.106052
  14. Riccardi D., Baldino L., Reverchon E. Liposomes, transferosomes and niosomes: production methods and their applications in the vaccinal field // J. Transl. Med. 2024. V. 22. P. 339. https://doi.org/10.1186/s12967-024-05160-4
  15. Шахова В.Н. Структурные особенности иносомальных везикул // Сельскохозяйственный журнал. 2020. Т. 13. № 5. С. 88-93. https://doi.org/10.25930/2687-1254/015.5.13.2020
  16. Кушназарова Р.А., Миргородская А.Б., Захарова Л.Я. Ниосомы, модифицированные катионными поверхностно-активными веществами, для увеличения биодоступности и стабильности индометацина // Известия Академии наук. Серия химическая. 2021. № 3. С. 585-591.
  17. Kushnazarova R., Mirgorodskaya A., Bushmeleva K., Vyshtakalyuk A., Lenina O., Petrov K., Zakharova L. Improving the stability, water solubility, and antioxidant activity of α-tocopherol by encapsulating it into niosomes modified with cationic carbamate-containing surfactants // Langmuir. 2024. V. 40. № 43. P. 22684-22692. https://doi.org/10.1021/acs.langmuir.4c02507
  18. Moghassemia S., Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review // J. Control. Release. 2014. V. 185. P. 22-36. https://doi.org/10.1016/j.jconrel.2014.04.015
  19. Manosroi A., Wongtrakul P., Manosroi J., Sakai H., Sugawara F., Yuasa M., Abe M. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol // Colloids and Surfaces B: Biointerfaces. 2003. V. 30. № 1-2. P. 129-138. https://doi.org/10.1016/S0927-7765(03)00080-8
  20. Kumar G.P., Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery - an overview // Acta Pharm. Sin. B. 2011. V. 1. № 4. P. 208-219. https://doi.org/10.1016/j.apsb.2011.09.002
  21. Israelashvili J.N. Intermolecular and surface forces, with applications to colloidal and biological systems //London: Academic Press, 1985. P. 247.
  22. Berg J.C. An Introduction to Interfaces and Colloids. The Bridge to Nanoscience. //World Scientific Publishing. 2010, P. 785.
  23. Nasseri B. Effect of cholesterol and temperature on the elastic properties of niosomal membranes // Int. J. Pharm. 2005. V. 300. № 1-2. P. 95-101. https://doi.org/10.1016/j.ijpharm.2005.05.009
  24. Biswal S., Murthy P.N., Sahu J., Sahoo P., Amir F. Vesicles of non-ionic surfactants (niosomes) and drug delivery potential // Int. J. Pharm. Sci. Nanotechnol. 2008. V. 1. № 1. P. 1-8. https://doi.org/10.37285/ijpsn.2008.1.1.1
  25. Khillari G.M., Parande B.S., Dongaonkar C.C., Humbad D.N. Niosomes as novel drug delivery system // Int. J. for Research Trends and Innovation. 2022. V. 7. № 6. P. 1115-1121. https://ijrti.org/papers/IJRT12206176. pdf
  26. Kathoke G.G., Shelke P.U., Kale A.S., Bedre A.B. Niosomes: A review of their structure, types, method of preparation, characterization and application // Int. Adv. Res. Sci. Commun. Technol. 2025. V. 5. № 8. P. 259-273. https://doi.org/10.48175/IJARSCT-24535
  27. Задымова Н.М., Малашихина А.А. Наноэмульсии полиоксиэтилен (4) лаурилового эфира с солюбилизированным основанием хлоргексидина // Коллоидн. журн. 2023. Т. 85. № 3. С. 296-306. https://doi.org/10.31857/S0023291223600074
  28. Inoue Y., Hagi A., Nii T., Tsubotani Y., Nakata H., and Iwata K. Novel antiseptic compound OPB-2045G shows potent bactericidal activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus both in vitro and in vivo: a pilot study in animals // J. Med. Microbiol. 2015. V. 64. № 1. P. 32-36. https://doi.org/10.1099/jmm.0.080861-0
  29. Cao Z., Spilker T., Fan Y., Kalikin L.M., Ciotti S.M., LiPuma J.J., Makidon P.E., Wilkinson J.E., Baker J.R., Wang S.H. Nanoemulsion is an effective antimicrobial for methicillin-resistant Staphylococcus aureus in infected wounds // Nanomedicine. 2017. V. 12. № 10. P. 1177-1185. https://doi.org/10.2217/nnm-2017-0025
  30. Шенфельд Н. Поверхностно-активные вещества на основе оксида этилена. М.: Химия, 1982.
  31. Русанов А.И. Мицеллообразование в растворах поверхностно-активных веществ. СПб.: Химия, 1992. 280 с.
  32. Задымова Н.М., Иванова Н.И. Смешанные мицеллы на основе Твин 80 как носители фелоипина в водной среде // Коллоидн. журн. 2013. Т. 75. № 2. С. 176-190. https://doi.org/10.7868/S0023291213020201
  33. Практикум по коллоидной химии / Под ред. Куличихина В.Г. М.: Вузовский учебник: ИНФРА-М, 2014.
  34. Hoiland H., Blokhus A.M. Solubilization in aqueous surfactant systems // Handbook of Surface and Colloid Chemistry. Ed. Birdi K.S. Boca Raton: CRC Press, 2008. P. 379-414. https://doi.org/10.1201/9781420040944
  35. Musial W., Voncina B., Pluta J., Kokol V. The study of release of chlorhexidine from preparations with modified thermosensitive poly-N-isopropylacrylamide microspheres // Sci. World J. V. 2012. P. 243707. https://doi.org/10.1100/2012/243707
  36. Фаергеманн Я. Противомикробная композиция // Патент RU 2 500 394 C2, опубликован 10.12.2013. Бюл. № 34.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).