BACTERIA COUNTING BY SERS SPECTROSCOPY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Traditional bacterial identification methods based on cultivation require significant time, which substantially limits their operational efficiency. This paper proposes a rapid and simple method for the quantification of S. aureus 209p and E. coli K12 bacterial cells based on indirect SERS spectroscopy using gold nanostar and nanorod tags conjugated with the 4- nitrothiophenol reporter molecule. The dependence of the SERS signal on the number of nanoparticle- labeled bacterial cells was investigated. The developed method for estimating bacterial cell count demonstrated good performance both for the direct measurement of the signal from the freshly prepared complex and for measuring the signal from the pellet after centrifugation. The most statistically significant results were obtained using gold nanostars under direct, pellet- free measurement conditions of the SERS signal from the bacteria complex.

About the authors

A. M. Burov

Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Separate Structural Subdivision of the Federal State Budgetary Scientific Institution, Federal Research Center "Saratov Scientific Center of Russian Academy of Sciences"

Saratov, Russia

E. V. Kryuchkova

Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Separate Structural Subdivision of the Federal State Budgetary Scientific Institution, Federal Research Center "Saratov Scientific Center of Russian Academy of Sciences"

Saratov, Russia

B. N. Khlebtsov

Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Separate Structural Subdivision of the Federal State Budgetary Scientific Institution, Federal Research Center "Saratov Scientific Center of Russian Academy of Sciences"

Email: Khlebtsov-b@ibppmu.ru
Saratov, Russia

E. S. Zavyalova

Lomonosov Moscow State University

Moscow, Russia

References

  1. La Rosa R., Johansen H.K., Molin S. Persistent bacterial infections, antibiotic treatment failure, and microbial adaptive evolution // Antibiotics. 2022. V. 11. № 3. P. 419. https://doi.org/10.3390/antibiotics11030419
  2. Eubank T.A., Long S.W., Perez K.K. Role of rapid diagnostics in diagnosis and management of patients with sepsis free // The Journal of Infectious Diseases. 2020. V. 222. № 2. P. S103—S109. https://doi.org/10.1093/infdis/jiaa263
  3. Kabiraz M.P., Majumdar P.R., Mahmud M.C., Bhowmik S., Ali. A. Conventional and advanced detection techniques of foodborne pathogens: a comprehensive review // Heliyon. 2023. V. 9. № 4. P. e15482. https://doi.org/10.1016/j.heliyon.2023.e15482
  4. Skogman M.E., Vuorela P.M., Fallarero A. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms //The Journal of Antibiotics. 2012. V. 65. P. 453—459. https://doi.org/10.1038/ja.2012.49
  5. Zhang K., Cheng L., Imazato S., Antonucci J.M., Lin N.J., Lin-Gibson S., Bai Y., Xu H.H.K. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties // J. Dent. 2013. V. 41. № 5. P. 464—474. https://doi.org/10.1016/j.jdent.2013.02.001
  6. Dudak F.C., Boyaci I.H. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors // Biotechnol. J. 2009. V. 4. № 7. P. 1003—1011. https://doi.org/10.1002/biot.200800316
  7. Koseki S., Nonaka J. Alternative approach to modeling bacterial lag time, using logistic regression as a function of time, temperature, pH, and sodium chloride concentration // Appl. Environ. Microbiol. 2012. V. 78. № 17. P. 6103—6112. https://doi.org/10.1128/AEM.01245-12
  8. Schacht VJ., Neumann L.V., Sandhi S.K., Chen L., Henning T., Klar P.J., Theophel K., Schnell S., Bunge M. Effects of silver nanoparticles on microbial growth dynamics // J. Appl. Microbiol. 2013. V. 114. N. 1. P. 25-35. https://doi.org/10.1111/jam.12000
  9. Vital M., Dignum M., Magic-Knezev A., Ross P., Rietveld L., Hammes F. Flow cytometry and adenosine triphosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems // Water Res. 2012. V. 46. N. 15. P. 4665-4676. https://doi.org/10.1016/j.watres.2012.06.010
  10. Zahavy E., Ber R., Gur D., Abramovich H., Freeman E., Maoz S., Yitzhaki S. Application of nanoparticles for the detection and sorting of pathogenic bacteria by flow-cytometry // Adv. Exp. Med. Biol. 2012. V. 733. P. 23-36. https://doi.org/10.1007/978-94-007-2555-3_3
  11. Rodriguez L., Zhang Zh., Wang D. Recent advances of Raman spectroscopy for the analysis of bacteria // Analytical Science Advances. 2023. V. 4. N. 3-4. P. 81-95. https://doi.org/10.1002/ansa.202200066
  12. Zhou X., Hu Z., Yang D., Xie Sh., Jiang Zh., Niessner R., Haisch C., Zhou H., Sun P. Bacteria detection: from powerful SERS to its advanced compatible techniques // Advanced Science. 2020. V. 7. N. 23. P. 2001739. https://doi.org/10.1002/advs.202001739
  13. Tadesse L.F., Safir F., Ho C.-S., Hasbach X., Khuri-Yakub B., Jeffrey S.S., Saleh A.A.E., Dionne J. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy // J. Chem. Phys. 2020. V. 152. P. 240902. https://doi.org/10.1063/1.5142767
  14. Yi J., You E.-M., Hu R., Wu D.-Y., et al. Surface-enhanced Raman spectroscopy: a half-century historical perspective // Chem. Soc. Rev. 2025. V. 54. P. 1453-1551. https://doi.org/10.1039/D4CS00883A
  15. Nazarovskaia D.A., Domin P.A., Gyupenen O.D., Tsinaikin I.I., Ermolaeva S.A., Gonchar K.A., Osminkina L.A. Advanced bacterial detection with SERS-active gold- and silver-coated porous silicon nanowires // Bull. Russ. Acad. Sci. Phys. V. 87 (Suppl 1). 2023. V. 87. P. S41-546. https://doi.org/10.1134/S1062873823704385
  16. Liu H., Gao X., Xu Ch. SERS tags for biomedical detection and bioimaging // Theranostics. 2022. V. 12. N. 4. P. 1870-1903. https://doi.org/10.7150/thno.66859
  17. Nikoobakht B., El-Sayed M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method // Chem. Mater. 2003. V. 15. N. 10. P. 1957-1962. https://doi.org/10.1021/cm0207321
  18. Khoury C.G., Vo-Dinh T. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization // J. Phys. Chem. C. Nanomater Interfaces. 2008. V. 112. P. 18849-18859. https://doi.org/10.1021/jp8054747
  19. Дыкман Л.А., Богатырев В.А., Щеголев С.Ю., Хлебцов Н.Г. Золотые наночастицы: синтез, свойства, биомедицинское применение. 2008. 319 с.
  20. Иноземцева О.А., Приходженко Е.С., Карташова А.М., Тюнина Ю.А., Захаревич А.М., Буров А.М., Хлебцов Б.Н. ГКР-метки на основе силикатных микрочастиц с адсорбированными золотыми наноэвздами // Коллоидный журнал. 2024. T. 86. N. 6. C. 742-755. https://doi.org/10.31857/S0023291224060078
  21. Khlebtsov B.N., Khanadeev V.A., Ye J., Sukhorukov G.B., Khlebtsov N.G. Overgrowth of gold nanorods by using a binary surfactant mixture // Langmuir. 2014. V. 30. N. 6. P. 1696-1703. https://doi.org/10.1021/la404399n
  22. Khlebtsov N.G., Lin L., Khlebtsov B.N., Ye J. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications // Theranostics. 2020. V. 10. N. 5. P. 2067-2094. https://doi.org/10.7150/thno.39968
  23. Khlebtsov B., Khanadeev V., Pylaev T., Khlebtsov N. A new T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments // J. Phys. Chem. C. 2011. V. 115. N. 14. P. 6317-6323. https://doi.org/10.1021/jp2000078
  24. Khlebtsov B.N., Khanadeev V.A., Burov A.M., Le Ru E.C., Khlebtsov N.G. Reexamination of surface-enhanced Raman scattering from gold nanorods as a function of aspect ratio // J. Phys. Chem. C. 2020. V. 124. N. 19. P. 10647-10658. https://doi.org/10.1021/acs.jpcc.0c00991

Supplementary files

Supplementary Files
Action
1. JATS XML
2. ИЗМЕРЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ МЕТОДОМ ГКР-СПЕКТРОСКОПИИ
Download (373KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).