BACTERIA COUNTING BY SERS SPECTROSCOPY
- Authors: Burov A.M.1, Kryuchkova E.V.1, Khlebtsov B.N.1, Zavyalova E.S.2
-
Affiliations:
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Separate Structural Subdivision of the Federal State Budgetary Scientific Institution, Federal Research Center "Saratov Scientific Center of Russian Academy of Sciences"
- Lomonosov Moscow State University
- Issue: Vol 87, No 6 (2025)
- Pages: 630–641
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376451
- DOI: https://doi.org/10.7868/S3034543X25060041
- ID: 376451
Cite item
Abstract
Keywords
About the authors
A. M. Burov
Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Separate Structural Subdivision of the Federal State Budgetary Scientific Institution, Federal Research Center "Saratov Scientific Center of Russian Academy of Sciences"Saratov, Russia
E. V. Kryuchkova
Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Separate Structural Subdivision of the Federal State Budgetary Scientific Institution, Federal Research Center "Saratov Scientific Center of Russian Academy of Sciences"Saratov, Russia
B. N. Khlebtsov
Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Separate Structural Subdivision of the Federal State Budgetary Scientific Institution, Federal Research Center "Saratov Scientific Center of Russian Academy of Sciences"
Email: Khlebtsov-b@ibppmu.ru
Saratov, Russia
E. S. Zavyalova
Lomonosov Moscow State UniversityMoscow, Russia
References
- La Rosa R., Johansen H.K., Molin S. Persistent bacterial infections, antibiotic treatment failure, and microbial adaptive evolution // Antibiotics. 2022. V. 11. № 3. P. 419. https://doi.org/10.3390/antibiotics11030419
- Eubank T.A., Long S.W., Perez K.K. Role of rapid diagnostics in diagnosis and management of patients with sepsis free // The Journal of Infectious Diseases. 2020. V. 222. № 2. P. S103—S109. https://doi.org/10.1093/infdis/jiaa263
- Kabiraz M.P., Majumdar P.R., Mahmud M.C., Bhowmik S., Ali. A. Conventional and advanced detection techniques of foodborne pathogens: a comprehensive review // Heliyon. 2023. V. 9. № 4. P. e15482. https://doi.org/10.1016/j.heliyon.2023.e15482
- Skogman M.E., Vuorela P.M., Fallarero A. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms //The Journal of Antibiotics. 2012. V. 65. P. 453—459. https://doi.org/10.1038/ja.2012.49
- Zhang K., Cheng L., Imazato S., Antonucci J.M., Lin N.J., Lin-Gibson S., Bai Y., Xu H.H.K. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties // J. Dent. 2013. V. 41. № 5. P. 464—474. https://doi.org/10.1016/j.jdent.2013.02.001
- Dudak F.C., Boyaci I.H. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors // Biotechnol. J. 2009. V. 4. № 7. P. 1003—1011. https://doi.org/10.1002/biot.200800316
- Koseki S., Nonaka J. Alternative approach to modeling bacterial lag time, using logistic regression as a function of time, temperature, pH, and sodium chloride concentration // Appl. Environ. Microbiol. 2012. V. 78. № 17. P. 6103—6112. https://doi.org/10.1128/AEM.01245-12
- Schacht VJ., Neumann L.V., Sandhi S.K., Chen L., Henning T., Klar P.J., Theophel K., Schnell S., Bunge M. Effects of silver nanoparticles on microbial growth dynamics // J. Appl. Microbiol. 2013. V. 114. N. 1. P. 25-35. https://doi.org/10.1111/jam.12000
- Vital M., Dignum M., Magic-Knezev A., Ross P., Rietveld L., Hammes F. Flow cytometry and adenosine triphosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems // Water Res. 2012. V. 46. N. 15. P. 4665-4676. https://doi.org/10.1016/j.watres.2012.06.010
- Zahavy E., Ber R., Gur D., Abramovich H., Freeman E., Maoz S., Yitzhaki S. Application of nanoparticles for the detection and sorting of pathogenic bacteria by flow-cytometry // Adv. Exp. Med. Biol. 2012. V. 733. P. 23-36. https://doi.org/10.1007/978-94-007-2555-3_3
- Rodriguez L., Zhang Zh., Wang D. Recent advances of Raman spectroscopy for the analysis of bacteria // Analytical Science Advances. 2023. V. 4. N. 3-4. P. 81-95. https://doi.org/10.1002/ansa.202200066
- Zhou X., Hu Z., Yang D., Xie Sh., Jiang Zh., Niessner R., Haisch C., Zhou H., Sun P. Bacteria detection: from powerful SERS to its advanced compatible techniques // Advanced Science. 2020. V. 7. N. 23. P. 2001739. https://doi.org/10.1002/advs.202001739
- Tadesse L.F., Safir F., Ho C.-S., Hasbach X., Khuri-Yakub B., Jeffrey S.S., Saleh A.A.E., Dionne J. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy // J. Chem. Phys. 2020. V. 152. P. 240902. https://doi.org/10.1063/1.5142767
- Yi J., You E.-M., Hu R., Wu D.-Y., et al. Surface-enhanced Raman spectroscopy: a half-century historical perspective // Chem. Soc. Rev. 2025. V. 54. P. 1453-1551. https://doi.org/10.1039/D4CS00883A
- Nazarovskaia D.A., Domin P.A., Gyupenen O.D., Tsinaikin I.I., Ermolaeva S.A., Gonchar K.A., Osminkina L.A. Advanced bacterial detection with SERS-active gold- and silver-coated porous silicon nanowires // Bull. Russ. Acad. Sci. Phys. V. 87 (Suppl 1). 2023. V. 87. P. S41-546. https://doi.org/10.1134/S1062873823704385
- Liu H., Gao X., Xu Ch. SERS tags for biomedical detection and bioimaging // Theranostics. 2022. V. 12. N. 4. P. 1870-1903. https://doi.org/10.7150/thno.66859
- Nikoobakht B., El-Sayed M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method // Chem. Mater. 2003. V. 15. N. 10. P. 1957-1962. https://doi.org/10.1021/cm0207321
- Khoury C.G., Vo-Dinh T. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization // J. Phys. Chem. C. Nanomater Interfaces. 2008. V. 112. P. 18849-18859. https://doi.org/10.1021/jp8054747
- Дыкман Л.А., Богатырев В.А., Щеголев С.Ю., Хлебцов Н.Г. Золотые наночастицы: синтез, свойства, биомедицинское применение. 2008. 319 с.
- Иноземцева О.А., Приходженко Е.С., Карташова А.М., Тюнина Ю.А., Захаревич А.М., Буров А.М., Хлебцов Б.Н. ГКР-метки на основе силикатных микрочастиц с адсорбированными золотыми наноэвздами // Коллоидный журнал. 2024. T. 86. N. 6. C. 742-755. https://doi.org/10.31857/S0023291224060078
- Khlebtsov B.N., Khanadeev V.A., Ye J., Sukhorukov G.B., Khlebtsov N.G. Overgrowth of gold nanorods by using a binary surfactant mixture // Langmuir. 2014. V. 30. N. 6. P. 1696-1703. https://doi.org/10.1021/la404399n
- Khlebtsov N.G., Lin L., Khlebtsov B.N., Ye J. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications // Theranostics. 2020. V. 10. N. 5. P. 2067-2094. https://doi.org/10.7150/thno.39968
- Khlebtsov B., Khanadeev V., Pylaev T., Khlebtsov N. A new T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments // J. Phys. Chem. C. 2011. V. 115. N. 14. P. 6317-6323. https://doi.org/10.1021/jp2000078
- Khlebtsov B.N., Khanadeev V.A., Burov A.M., Le Ru E.C., Khlebtsov N.G. Reexamination of surface-enhanced Raman scattering from gold nanorods as a function of aspect ratio // J. Phys. Chem. C. 2020. V. 124. N. 19. P. 10647-10658. https://doi.org/10.1021/acs.jpcc.0c00991
Supplementary files


