MODELLING OF NANOEMULSION STABILITY IN eLIPOSOMES
- Authors: Bazurov A.A1, Koroleva M.Y.1
-
Affiliations:
- Mendeleev University of Chemical Technology
- Issue: Vol 87, No 6 (2025)
- Pages: 616–629
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376450
- DOI: https://doi.org/10.7868/S3034543X25060039
- ID: 376450
Cite item
Abstract
eLiposomes are O/W nanoemulsions encapsulated within the inner pool of liposomes. The main challenge in developing these systems is understanding how different structures are formed in the confined space of liposomes. In this study, we proposed a method for calculating the forces of attraction and repulsion between an oil droplet and the inner surface of a hollow sphere, aiming to model the interior of liposomes. The motion and interaction of the oil droplets with the inner surface of the liposome were modelled using Langevin dynamics. At a low liposome charge of –10 mV, oil droplets were adsorbed onto the inner surface of liposomes, forming structures that can be referred to as inverted colloidosomes. If the charge on the oil droplets in the nanoemulsion was also low and equal to –10 mV, the adsorbed oil droplets formed regions of dense hexagonal packing on the inner surface of the liposomes. If the charge on the oil droplets in the nanoemulsion was high and equal to –50 mV, the droplets repelled each other and were located at some distance, resulting in sparse packing on the inner surface of the liposomes. Multicompartment systems, such as inverted colloidosomes, are promising carriers for hydrophobic, hydrophilic and amphiphilic drug compounds.
About the authors
A. A Bazurov
Mendeleev University of Chemical TechnologyMoscow, Russia
M. Yu. Koroleva
Mendeleev University of Chemical Technology
Email: m.yu.kor@gmail.com
Moscow, Russia
References
- Fang Z., Pan S., Gao P., Sheng H., Li L., Shi L., Zhang Y., Cai X. Stimuli-responsive charge-reversal nano drug delivery system: The promising targeted carriers for tumor therapy // Int. J. Pharm. 2020. V. 575. P. 118841. https://doi.org/10.1016/j.ijpharm.2019.118841
- Seidi K., Neubauer H.A., Moriggl R., Jahanban-Esfahian R., Javaheri T. Tumor target amplification: Implications for nano drug delivery systems // J. Controlled Release. 2018. V. 275. P. 142-161. https://doi.org/10.1016/j.jconrel.2018.02.020
- Xu M., Li S. Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment // Cancer Letters. 2023. V. 574. P. 216397. https://doi.org/10.1016/j.canlet.2023.216397
- Chen L., He Y., Lan J., Li Z., Gu D., Nie W., Zhang T., Ding Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting // Biomedicine & Pharmacotherapy. 2024. V. 180. P. 117520. https://doi.org/10.1016/j.biopha.2024.117520
- Fulton M.D., Najahi- Missaoui W. Liposomes in cancer therapy: How did we start and where are we now // Int. J. Mol. Sci. 2023. V. 24. № 7. P. 6615. https://doi.org/10.3390/ijms24076615
- Wang S., Chen Y., Guo J., Huang Q. Liposomes for tumor targeted therapy: A review // Int. J. Mol. Sci. 2023. V. 24. № 3. P. 2643. doi: 10.3390/ijms24032643
- Olusanya T.O.B., Ahmad R.R.H., Ibegbu D.M., Smith J.R., Elkordy A.A. Liposomal drug delivery systems and anticancer drugs // Molecules. 2018. V. 23. № 4. P. 907. https://doi.org/10.3390/molecules23040907
- Hamad I., Harb A.A., Bustanji Y. Liposome-based drug delivery systems in cancer research: An analysis of global landscape efforts and achievements // Pharmaceutics. 2024. V. 16. № 3. P. 400. https://doi.org/10.3390/pharmaceutics16030400
- Barenholz Y. Doxil® – The first FDA-approved nano-drug: Lessons learned // J. Controlled Release. 2012. V. 160. № 2. P. 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020
- Chen J., Hu S., Sun M., Shi J., Zhang H., Yu H., Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy // Eur. J. Pharm. Sci. 2024. V. 193. P. 106688. https://doi.org/10.1016/j.ejps.2023.106688
- Koroleva M.Y., Yurtov E.V. Nanoemulsions: the properties, methods of preparation and promising applications // Russ. Chem. Rev. 2012. V. 81. № 1. P. 21–43. https://doi.org/10.1070/RC2012v081n01ABEH004219
- Wilson R.J., Li Y., Yang G., Zhao C.-X. Nanoemulsions for drug delivery // Particuology. 2022. V. 64. P. 85–97. https://doi.org/10.1016/j.partic.2021.05.009
- Lattin J.R., Belnap D.M., Pitt W.G. Formation of eLiposomes as a drug delivery vehicle // Colloids Surf., B. 2012. V. 89. P. 93–100. https://doi.org/10.1016/j.colsurfb.2011.08.030
- Koroleva M. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications // PCCP. 2023. V. 25. № 33. P. 21836–21859. https://doi.org/10.1039/D3CP01984E
- Lin C.-Y., Javadi M., Belnap D.M., Barrow J.R., Pitt W.G. Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy // Nanomedicine: Nanotechnology, Biology and Medicine. 2014. V. 10. № 1. P. 67–76. https://doi.org/10.1016/j.nano.2013.06.011
- Javadi M., Pitt W.G., Tracy C.M., Barrow J.R., Willardson B.M., Hartley J.M., Tossie N.H. Ultrasonic gene and drug delivery using eLiposomes // J. Controlled Release. 2013. V. 167. № 1. P. 92–100. https://doi.org/10.1016/j.jconrel.2013.01.009
- Lattin J.R., Pitt W.G., Belnap D.M., Hussein G.A. Ultrasound-induced calcine release from eLiposomes // Ultrasound in Med. & Biol. 2012. V. 38. № 12. P. 2163–2173. https://doi.org/10.1016/j.ultrasmedbio.2012.08.001
- Zafar M.N., Pitt W.G., Hussein G.A. Encapsulation and release of calcinein from herceptin-conjugated eLiposomes // Heliyon. 2024. V. 10. № 6. P. e27882. https://doi.org/10.1016/j.heliyon.2024.e27882
- Chen J.C., Kim A.S. Brownian dynamics, molecular dynamics, and Monte Carlo modeling of colloidal systems // Adv. Colloid Interface Sci. 2004. V. 112. № 1–3. P. 159–173. https://doi.org/10.1016/j.cis.2004.10.001
- Paquet E., Viktor H.L. Molecular dynamics, Monte Carlo simulations, and Langevin dynamics: a computational review // BioMed Res. Int. 2015. V. 2015. P. 183918. https://doi.org/10.1155/2015/183918
- Koroleva M., Yurtov E. Pickering emulsions stabilized with magnetite, gold, and silica nanoparticles: Mathematical modeling and experimental study // Colloids Surf., A. 2020. V. 601. P. 125001. https://doi.org/10.1016/j.colsurfa.2020.125001
- Koroleva M.Y., Tokarev A.M., Yurtov E.V. Simulations of emulsion stabilization by silica nanoparticles // Mendeleev Commun. 2017. V. 27. № 5. P. 518–520. https://doi.org/10.1016/j.mencom.2017.09.030
- Королева М.Ю., Плотниеце А. Агрегативная устойчивость наноэмульсий в еЛипосомах: анализ результатов математического моделирования // Коллоид. журн. 2022. Т. 84. № 2. С. 164–170. https://doi.org/10.31857/S0023291222020069
- Skeel R.D., Izaguirre J.A. An impulse integrator for Langevin dynamics // Mol. Phys. 2002. V. 100. Ne 24. P. 3885-3891. https://doi.org/10.1080/0026897021000018321
- Hamaker H.C. The London-van der Waals attraction between spherical particles // Physica, 1937. V. 4. Ne 10. P. 1058-1072. https://doi.org/10.1016/S0031-8914(37)80203-7
- Lyklema H.J. Fundamentals of interface and colloid science: soft colloids. Academic Press, 2005, V. 5: Soft Colloids.
- White L.R. On the Deryaguin approximation for the interaction of macrobodies // J. Colloid Interface Sci. 1983. V. 95. Ne 1. P. 286-288. https://doi.org/10.1016/0021-9797(83)90103-0
- Israelachvili J.N. Intermolecular and surface forces. Academic Press. 2011.
- Buchner R., Hefter G.T., May P.M. Dielectric relaxation of aqueous NaCl solutions // J. Phys. Chem. A. 1999. V. 103. Ne 1. P. 1-9. https://doi.org/10.1021/jp982977k
- Koroleva M.Yu., Yurtov E.V. Pickering emulsions: structure, properties and the use as colloidosomes and stimuli- responsive emulsions // Russ. Chem. Rev. 2022. V. 91. Ne 5. P. RCR5024. https://doi.org/10.1070/RCR5024
Supplementary files


