DNA-ORIGAMI APERTURED TILES SELF-ASSEMBLY AND SURFACE AFM-CHARACTERIZATION IN THE PRESENCE OF SPONTANEOUS ATTACHMENT OF SINGLE COLLOIDAL QUANTUM DOT
- Authors: Arzhanov A.I1,2, Stepanov M.E1, Egorova T.V1, Magaryan K.A1, Akasov R.A1, Khaydukov E.V2, Naumov A.V1,2
-
Affiliations:
- Moscow Pedagogical State University
- Lebedev Physical Institute, Troitsk Branch
- Issue: Vol 87, No 6 (2025)
- Pages: 598–615
- Section: Articles
- Submitted: 27.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/376449
- DOI: https://doi.org/10.7868/S3034543X25060025
- ID: 376449
Cite item
Abstract
About the authors
A. I Arzhanov
Moscow Pedagogical State University; Lebedev Physical Institute, Troitsk Branch
Email: arzhanov.artyom@gmail.com
Moscow, Russia; Troitsk, Russia
M. E Stepanov
Moscow Pedagogical State UniversityMoscow, Russia
T. V Egorova
Moscow Pedagogical State UniversityMoscow, Russia
K. A Magaryan
Moscow Pedagogical State UniversityMoscow, Russia
R. A Akasov
Moscow Pedagogical State UniversityMoscow, Russia
E. V Khaydukov
Lebedev Physical Institute, Troitsk BranchTroitsk, Russia
A. V Naumov
Moscow Pedagogical State University; Lebedev Physical Institute, Troitsk BranchMoscow, Russia; Troitsk, Russia
References
- Porrati F., Barth S., Gazzadi G.C., Frabboni S., Volkov O.M., Makarov D., Huth M. Site-selective chemical vapor deposition on direct-write 3d nanoarchitectures // Acs Nano. 2023. V. 17. № 5. P. 4704−4715. https://doi.org/10.1021/acsnano.2c10968
- Tan C., Chen J., Wu X.-J., Zhang H. Epitaxial growth of hybrid nanostructures // Nature Reviews Materials. 2018. V. 3. № 2. P. 17089. https://doi.org/10.1038/natrevmats.2017.89
- Sorokin S.V., Klimko G.V., Sedova I.V., Galimov A.I., Serov Y.M., Kirilenko D.A., Prasolov N.D., Toropov A.A. Molecular-beam epitaxy of metamorphic inas/ingaas quantum-dot heterostructures emitting in the telecom wavelength range // JETP Letters. 2024. V. 120. № 9. P. 668−674. https://doi.org/10.1134/s0021364024603294
- Wang X., Dai X., Wang H., Wang J., Chen Q., Chen F., Yi Q., Tang R., Gao L., Ma L., Wang C., Wang X., He G., Fei Y., Guan Y., Zhang B., Dai Y., Tu X., Zhang L., Zhang L., Zou G. All-water etching-free electron beam lithography for on-chip nanomaterials // Acs Nano. 2023. V. 17. № 5. P. 4933−4941. https://doi.org/10.1021/acsnano.2c12387
- Gol’tsman G.N., Okunev O., Chulkova G., Lipatov A., Semenov A., Smirnov K., Voronov B., Dzardanov A., Williams C., Sobolewski R. Picosecond superconducting single-photon optical detector // Applied Physics Letters. 2001. V. 79. № 6. P. 705−707. https://doi.org/10.1063/1.1388868
- Shangina E.L., Smirnov K.V., Morozov D.V., Kovalyuk V.V., Gol’tsman G.N., Verevkin A.A., Toropov A.I. Concentration dependence of the intermediate frequency bandwidth of submillimeter heterodyne AlGaAs/GaAs nanostructures // Bulletin of the Russian Academy of Sciences: Physics. 2010. V. 74. № 1. P. 100−102. https://doi.org/10.3103/s1062873810010272
- Fan J., Qian L. Quantum dot patterning by direct photolithography // Nat Nanotechnol. 2022. V. 17. № 9. P. 906−907. https://doi.org/10.1038/s41565-022-01187-0
- Anscombe N. Direct laser writing // Nature Photonics. 2010. V. 4. № 1. P. 22−23. https://doi.org/10.1038/nphoton.2009.250
- Chichkov B.N., Momma C., Nolte S., Alvensleben F., Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids // Applied Physics A Materials Science & Processing. 1996. V. 63. № 2. P. 109−115. https://doi.org/10.1007/bf01567637
- Gurbatov S.O., Shevlyagin A.V., Zhizhchenko A.Y., Modin E.B., Kuchmizhak A.A., Kudryashov S.I. Photothermal conversion and laser-induced transformations in silicon–germanium alloy nanoparticles // JETP Letters. 2024. V. 119. № 12. P. 910−916. https://doi.org/10.1134/s0021364024601398
- Nastulyavichus A.A., Ulturgasheva E.V., Kudryashov S.I. Nanosecond fabrication of hyperdoped silicon // Bulletin of the Lebedev Physics Institute. 2025. V. 51. № 12. P. 583−588. https://doi.org/10.3103/s1068335624602036
- Chubich D.A., Kolymagin D.A., Kazakov I.A., Vitukhnovsky A.G. Morphology and structural parameters of three-dimensional structures created using STED nanolithography // Bulletin of the Russian Academy of Sciences: Physics. 2018. V. 82. № 8. P. 1012−1017. https://doi.org/10.3103/s1062873818080154
- Farsari M., Chichkov B.N. Two-photon fabrication // Nature Photonics. 2009. V. 3. № 8. P. 450−452. https://doi.org/10.1038/nphoton.2009.131
- Demina P.A., Khaydukov K.V., Rocheva V.V., Akasov R.A., Generalova A.N., Khaydukov E.V. Technology of infrared photopolymerization // PHOTONICS Russia. 2022. V. 16. № 8. P. 600−602. https://doi.org/10.22184/1993-7296.FRos.2022.16.8.600.602
- Balykin V.I., Borisov P.A., Letokhov V.S., Melentiev P.N., Rudnev S.N., Cherkun A.P., Akimenko A.P., Apel P.Y., Skuratov V.A. Atom “pinhole camera” with nanometer resolution // JETP Letters. 2006. V. 84. № 8. P. 466−469. https://doi.org/10.1134/s0021364006200124
- Marago O.M., Jones P.H., Gucciardi P.G., Volpe G., Ferrari A.C. Optical trapping and manipulation of nanostructures // Nat Nanotechnol. 2013. V. 8. № 11. P. 807−819. https://doi.org/10.1038/nnano.2013.208
- Shilkin D.A., Lyubin E.V., Soboleva I.V., Fedyanin A.A. Trap position control in the vicinity of reflecting surfaces in optical tweezers // JETP Letters. 2014. V. 98. № 10. P. 644−647. https://doi.org/10.1134/s0021364013230124
- Kaur A., Bajaj B., Kaushik A., Saini A., Sud D. A review on template assisted synthesis of multi-functional metal oxide nanostructures: Status and prospects // Materials Science and Engineering: B. 2022. V. 286. P. 116005. https://doi.org/10.1016/j.mseb.2022.116005
- Apel P. Track etching technique in membrane technology // Radiation Measurements. 2001. V. 34. № 1−6. P. 559−566. https://doi.org/10.1016/s1350-4487(01)00228-1
- Kozhina E.P., Bedin S.A., Nechaeva N.L., Podoynitsyn S.N., Tarakanov V.P., Andreev S.N., Grigoriev Y.V., Naumov A.V. Ag-nanowire bundles with gap hot spots synthesized in track-etched membranes as effective sers-substrates // Applied Sciences. 2021. V. 11. № 4. P. 1375. https://doi.org/10.3390/app11041375
- Kozhina E.P., Andreev S.N., Tarakanov V.P., Bedin S.A., Doludenko I.M., Naumov A.V. Study of local fields of dendrite nanostructures in hot spots formed on sers-active substrates produced via template-assisted synthesis // Bulletin of the Russian Academy of Sciences: Physics. 2021. V. 84. № 12. P. 1465−1468. https://doi.org/10.3103/s1062873820120205
- Stepanov M.E., Khorkina S.A., Arzhanov A.I., Karabulin A.V., Matyushenko V.I., Naumov A.V. Near-field effects at the nodes of a gold nanonetwork grown by laser ablation in superfluid helium: Crossover between “tip and gap hot spots” // JETP Letters. 2024. V. 120. № 4. P. 223−229. https://doi.org/10.1134/S0021364024602161
- Murray C.B., Kagan C.R., Bawendi M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies // Annual Review of Materials Science. 2000. V. 30. № 1. P. 545−610. https://doi.org/10.1146/annurev.matsci.30.1.545
- Huo D., Kim M.J., Lyu Z., Shi Y., Wiley B.J., Xia Y. One-dimensional metal nanostructures: From colloidal syntheses to applications // Chem. Rev. 2019. V. 119. № 15. P. 8972−9073. https://doi.org/10.1021/acs.chemrev.8b00745
- Arzhanov A.I., Savostianov A.O., Magaryan K.A., Karimullin K.R., Naumov A.V. Photonics of semiconductor quantum dots: Basic aspects // PHOTONICS Russia. 2021. V. 15. № 9. P. 622−641. https://doi.org/10.22184/1993-7296.FRos.2021.15.8.622.641
- Arzhanov A.I., Savostianov A.O., Magaryan K.A., Karimullin K.R., Naumov A.V. Photonics of semiconductor quantum dots: Applied aspects // PHOTONICS Russia. 2022. V. 16. № 2. P. 96−112. https://doi.org/10.22184/1993-7296.FRos.2022.16.2.96.112
- Rogach A.L., Franzl T., Klar T.A., Feldmann J., Gaponik N., Lesnyak V., Shavel A., Eychmüller A., Rakovich Y.P., Donegan J.F. Aqueous synthesis of thiol-capped cdte nanocrystals: State-of-the-art // The Journal of Physical Chemistry C. 2007. V. 111. № 40. P. 14628−14637. https://doi.org/10.1021/jp072463y
- Magaryan K.A., Mikhailov M.A., Karimullin K.R., Vasilieva I.A., Klimusheva G.V. Temperature dependence of the luminescence spectra of liquid crystal composites with cdse quantum dots // Bulletin of the Russian Academy of Sciences: Physics. 2014. V. 78. № 12. P. 1336−1340. https://doi.org/10.3103/s1062873814120193
- Galisteo-Lopez J.F., Ibisate M., Sapienza R., Froufe-Perez L.S., Blanco A., Lopez C. Self-assembled photonic structures // Adv Mater. 2011 V. 23. № 1. P. 30−69. https://doi.org/10.1002/adma.201000356
- Grzelczak M., Vermant J., Furst E.M., Liz-Marzan L.M. Directed self-assembly of nanoparticles // Acs Nano. 2010. V. 4. № 7. P. 3591−3605. https://doi.org/10.1021/nn100869j
- Kovalets N.P., Kozhina E.P., Razumovskaya I.V., Arzhanov A.I., Naumov А.V. Scratching of metallized polymer films by vickers indenter as a method for controlled production of SERS-active metasurfaces // Journal of Luminescence. 2024. V. 275. P. 120803. https://doi.org/10.1016/j.jlumin.2024.120803
- Dahoumane S.A., Jeffryes C., Mechouet M., Agathos S.N. Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition // Bioengineering. 2017. V. 4. № 1. P. 14. https://doi.org/10.3390/bioengineering4010014
- Klaus T., Joerger R., Olsson E., Granqvist C.G. Silver-based crystalline nanoparticles, microbially fabricated // Proc. Natl. Acad. Sci. USA. 1999. V. 96. № 24. P. 13611−13614. https://doi.org/10.1073/pnas.96.24.13611
- Sachin K., Karn S.K. Microbial fabricated nanosystems: Applications in drug delivery and targeting // Frontiers in Chemistry. 2021. V. 9. P. 617353. https://doi.org/10.3389/fchem.2021.617353
- Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Parishcha R., Ajaykumar P.V., Alam M., Kumar R., Sastry M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis // Nano Letters. 2001. V. 1. № 10. P. 515−519. https://doi.org/10.1021/nl0155274
- Kowshik M., Ashtaputre S., Kharrazi S., Vogel W., Urban J., Kulkarni S.K., Paknikar K.M. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain mky3 // Nanotechnology. 2003. V. 14. № 1. P. 95−100. https://doi.org/10.1088/0957-4484/14/1/321
- Iravani S. Green synthesis of metal nanoparticles using plants // Green Chemistry. 2011. V. 13. № 10. P. 2638−2650. https://doi.org/10.1039/c1gc15386b
- Willner I., Baron R., Willner B. Growing metal nanoparticles by enzymes // Advanced Materials. 2006. V. 18. № 9. P. 1109−1120. https://doi.org/10.1002/adma.200501865
- Gholami-Shabani M., Shams-Ghahfarokhi M., Gholami-Shabani Z., Akbarzadeh A., Riazi G., Ajdari S., Amani A., Razzaghi-Abyaneh M. Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from escherichia coli: A green eco-friendly approach // Process Biochemistry. 2015. V. 50. № 7. P. 1076−1085. https://doi.org/10.1016/j.procbio.2015.04.004
- Mao C., Solis D.J., Reiss B.D., Kottmann S.T., Sweeney R.Y., Hayhurst A., Georgiou G., Iverson B., Belcher A.M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires // Science. 2004. V. 303. № 5655. P. 213−217. https://doi.org/10.1126/science.1092740
- Nam K.T., Kim D.W., Yoo P.J., Chiang C.Y., Meethong N., Hammond P.T., Chiang Y.M., Belcher A.M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes // Science. 2006. V. 312. № 5775. P. 885−888. https://doi.org/10.1126/science.1122716
- Sandhage K.H., Dickerson M.B., Huseman P.M., Caranna M.A., Clifton J.D., Bull T.A., Heibel T.J., Overton W.R., Schoenwaelder M.E.A. Novel, bioclastic route to self-assembled, 3d, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells // Advanced Materials. 2002. V. 14. № 6. P. 429−433. https://doi.org/10.1002/1521-4095(20020318)14:6<429::Aid-adma429>3.0.Co;2-c
- Kang F., Alvarez P.J., Zhu D. Microbial extracellular polymeric substances reduce ag+ to silver nanoparticles and antagonize bactericidal activity // Environ. Sci. Technol. 2014. V. 48. № 1. P. 316−322. https://doi.org/10.1021/es403796x
- Senapati S., Syed A., Moee S., Kumar A., Ahmad A. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis // Materials Letters. 2012. V. 79. P. 116–118. https://doi.org/10.1016/j.matlet.2012.04.009
- Seeman N.C. DNA in a material world // Nature. 2003. V. 421. P. 427–431. https://doi.org/10.1038/nature01406
- Rothemun, P.W. Folding DNA to create nanoscale shapes and patterns // Nature. 2006. V. 440. № 7082. P. 297–302. https://doi.org/10.1038/nature04586
- Nangreave J., Han D., Liu Y., Yan H. DNA origami: A history and current perspective // Current Opinion in Chemical Biology. 2010. V. 14. № 5. P. 608–615. https://doi.org/10.1016/j.cbpa.2010.06.182
- Kuzyk A., Jungmann R., Acuna G.P., Liu N. DNA origami route for nanophotonics // ACS Photonics. 2018. V. 5. № 4. P. 1151–1163. https://doi.org/10.1021/acsphotonics.7b01580
- Dey S., Fan C., Gothelf K.V., Li J., Lin C., Liu L., Liu N., Nijenhuis M.A.D., Saccà B., Simmel F.C., Yan H., Zhan P. DNA origami // Nature Reviews Methods Primers. 2021. V. 1. № 1. P. 13. https://doi.org/10.1038/s43586-020-00009-8
- Zhan P., Peil A., Jiang Q., Wang D., Mousavi S., Xiong Q., Shen Q., Shang Y., Ding B., Lin C., Ke Y., Liu N. Recent advances in DNA origami-engineered nanomaterials and applications // Chemical Reviews. 2023. V. 123. № 7. P. 3976–4050. https://doi.org/10.1021/acs.chemrev.3c00028
- Tian Y., Wang T., Liu W., et al. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames // Nature Nanotech 2015 V. 10. P. 637–644. https://doi.org/10.1038/nnano.2015.105
- Engelen W., Dietz H. Advancing biophysics using DNA origami // Annu Rev Biophys. 2021. V. 50. P. 469–492. https://doi.org/10.1146/annurev-biophys-110520-125739
- Zhang Z., Ahamed M.A., Yang D. Biological properties and DNA nanomaterial biosensors of exosomal miRNAs in disease diagnosis // Sensors Diagnostics. 2025. V. 4. № 4, P. 273–292. https://doi.org/10.1039/d4sd00373j
- Huang J., Jaekel A., Van Den Boom, J., Podlesainski D., Elnaggar M., Heuer-Jungemann A., Kaiser M., Meyer H., Saccà B. A modular DNA origami nanocompartment for engineering a cell-free, protein unfolding and degradation pathway // Nature nanotechnology. 2024. V. 19. № 10. P. 1521–1531. https://doi.org/10.1038/s41565-024-01738-7
- Schreiber R., Do J., Roller E.M., Zhang T., Schüller V.J., Nickels P.C., Feldmann J., Liedl T. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds // Nat Nanotechnol. 2014. V. 9. № 1. P. 74–78. https://doi.org/10.1038/nnano.2013.253
- Chen C., Wei X., Parsons M.F., Guo J., Banal J.L., Zhao Y., Scott M.N., Schlau-Cohen G.S., Hernandez R., Bathe M. Nanoscale 3d spatial addressing and valence control of quantum dots using wireframe DNA origami // Nat Commun. 2022. V. 13. № 1. P. 4935. https://doi.org/10.1038/s41467-022-32662-w
- Wang Z., Yan T.D., Susha A.S., Chan M.S., Kershaw S.V., Lo P.K., Rogach A.L. Aggregation-free DNA nanocage/quantum dot complexes based on electrostatic adsorption // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016. V. 495. P. 62–67. https://doi.org/https://doi.org/10.1016/j.colsurfa.2016.02.002
- Stepanov M.E., Khokhryakova U.A., Egorova T.V., Magaryan K.A., Naumov A.V. Shedding light on DNA-origami // PHOTONICS Russia. 2024. V. 18. № 1. P. 72–80. https://doi.org/10.22184/1993-7296.FRos.2024.18.1.72.80
- Stepanov M.E., Khokhryakova U.A., Egorova T.V., Magaryan K.A., Naumov A.V. Shedding light on DNA-origami: Practice // PHOTONICS Russia. 2024. V. 18. № 2. P. 166–174. https://doi.org/10.22184/1993-7296.FRos.2024.18.2.166.174
- Stepanov M.E., Khokhryakova U.A., Egorova T.V., Magaryan K.A., Naumov A.V. Shedding light on DNA-origami: Applications in photonics // PHOTONICS Russia. 2024. V. 18. № 5. P. 398–405. https://doi.org/10.22184/1993-7296.FRos.2024.18.5.398.405
- Kuzyk A., Schreiber R., Fan Z., Pardatscher G., Roller E.M., Hogele A., Simmel F.C., Govorov A.O., Liedl T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response // Nature. 2012. V. 483. № 7389. P. 311–314. https://doi.org/10.1038/nature10889
- Liu N., Liedl T. DNA-assembled advanced plasmonic architectures // Chem. Rev. 2018. V. 118. № 6. P. 3032–3053. https://doi.org/10.1021/acs.chemrev.7b00225
- Huang Y., Nguyen M.K., Natarajan A.K., Nguyen V.H., Kuzyk A. A DNA origami-based chiral plasmonic sensing device // ACS Appl Mater Interfaces. 2018. V. 10. № 51. P. 44221–44225. https://doi.org/10.1021/acsami.8b19153
- Tikhomirov G., Petersen P., Qian L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns // Nature. 2017. V. 552. № 7683. P. 67–71. https://doi.org/10.1038/nature24655
- Acuna G.P., Moller F.M., Holzmeister P., Beater S., Lalkens B., Tinnefeld P. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas // Science. 2012. V. 338. № 6106. P. 506–510. https://doi.org/10.1126/science.1228638
- Douglas S.M., Dietz H., Liedl T., Hogberg B., Graf F., Shih W.M. Self-assembly of DNA into nanoscale three-dimensional shapes // Nature. 2009. V. 459. № 7245. P. 414–418. https://doi.org/10.1038/nature08016
- Martynenko I.V., Erber E., Ruider V., Dass M., Posnjak G., Yin X., Altpeter P., Liedl T. Site-directed placement of three-dimensional DNA origami // Nat Nanotechnol. 2023. V. 18. № 12. P. 1456–1462. https://doi.org/10.1038/s41565-023-01487-z
- Filippova Y.A., Papugaeva A.V., Panov D.V., Kozhina E.P., Razumovskaya I.V., Bedin S.A. Studying the geometry and physical characteristics of feni nanowires in ferrofluids // Bulletin of the Russian Academy of Sciences: Physics. 2023. V. 87. № 12. P. 1885–1889. https://doi.org/10.1134/s1062873823704142
- Wang H., Jin G., Tan Q. Microstructural characterization of v-defects in InGaN/GaN multiquantum wells // JETP Letters. 2020. V. 111. № 5. P. 264–267. https://doi.org/10.1134/s0021364020050021
- Masyutin A.G., Tarasova E.K., Onishchenko G.E., Erokhina M.V. Identifying carbon nanoparticles in biological samples by means of transmission electron microscopy // Bulletin of the Russian Academy of Sciences: Physics. 2023. V. 87. № 10. P. 1443–1448. https://doi.org/10.3103/s106287382370346x
- Sollier J., Stork C.T., Garcia-Rubio M.L., Paulsen R.D., Aguilera A., Cimprich K.A. Transcription-coupled nucleotide excision repair factors promote r-loop-induced genome instability // Mol Cell. 2014. V. 56. № 6. P. 777–785. https://doi.org/10.1016/j.molcel.2014.10.020
- Shapiro D.A., Yu Y.-S., Tyliszczak T., Cabana J., Celestre R., Chao W., Kaznatcheev K., Kilcoyne A.L.D., Maia F., Marchesini S., Meng Y.S., Warwick T., Yang L.L., Padmore H.A. Chemical composition mapping with nanometre resolution by soft X-ray microscopy // Nature Photonics. 2014. V. 8. № 10. P. 765–769. https://doi.org/10.1038/nphoton.2014.207
- Peddie C.J., Genoud C., Kreshuk A., Meechan K., Micheva K.D., Narayan K., Pape C., Parton R.G., Schieber N.L., Schwab Y., Titze B., Verkade P., Aubrey A., Collinson L.M. Volume electron microscopy // Nat. Rev. Methods. Primers. 2022. V. 2. P. 51. https://doi.org/10.1038/s43586-022-00131-9
- Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm) // Nat. Methods. 2006. V. 3. № 10. P. 793–796. https://doi.org/10.1038/nmeth929
- Genty G., Salmela L., Dudley J.M., Brunner D., Kokhanovskiy A., Kobtsev S., Turitsyn S.K. Machine learning and applications in ultrafast photonics // Nature Photonics. 2021. V. 15. № 2. P. 91–101. https://doi.org/10.1038/s41566-020-00716-4
- Lelek M., Gyparaki M.T., Beliu G., Schueder F., Griffie J., Manley S., Jungmann R., Sauer M., Lakadamyali M., Zimmer C. Single-molecule localization microscopy // Nat. Rev. Methods Primers. 2021. V. 1. P. 39. https://doi.org/10.1038/s43586-021-00038-x
- Eremchev I.Y., Prokopova D.V., Losevskii N.N., Mynzhasarov I.T., Kotova S.P., Naumov A.V. Three-dimensional fluorescence nanoscopy of single quantum emitters based on the optics of spiral light beams // Physics-Uspekhi. 2021. V. 65. № 6. P. 617–626. https://doi.org/10.3367/UFNe.2021.05.038982
- Dahlberg P.D., Moerner W.E. Cryogenic super-resolution fluorescence and electron microscopy correlated at the nanoscale // Annual Review of Physical Chemistry. 2021. V. 72. № 1. P. 253–278. https://doi.org/10.1146/annurev-physchem-090319-051546
- Eremchev M.Y., Naumov A.V. Determination of the character of the interaction of bioactive ions with phospholipid membranes using nonlinear microscopy methods // JETP Letters. 2025. V. 121. № 3. P. 225–230. https://doi.org/10.1134/s0021364024605098
- Giessibl F.J. Advances in atomic force microscopy // Reviews of Modern Physics. 2003. V. 75. № 3. P. 949–983. https://doi.org/10.1103/RevModPhys.75.949
- Golovanova A.V., Domnina M.A., Arzhanov A.I., Karimullin K.R., Eremchev I.Y., Naumov A.V. AFM characterization of track-etched membranes: Pores parameters distribution and disorder factor // Applied Sciences. 2022. V. 12. № 3. P. 1334. https://doi.org/10.3390/app12031334
- Verma P. Tip-enhanced Raman spectroscopy: Technique and recent advances // Chemical Reviews. 2017. V. 117. № 9. P. 6447−6466. https://doi.org/10.1021/acs.chemrev.6b00821
- Chernykh E.A., Kharintsev S.S. Sensing phase transitions in solids using thermoplasmonics // Bulletin of the Russian Academy of Sciences: Physics. 2023. V. 86. № S1. P. S37−S40. https://doi.org/10.3103/s1062873822700356
- Zhao X., Li M., Ma T., Yan J., Khalaf G.M.G., Chen C., Hsu H.Y., Song H., Tang J. Stable pbs colloidal quantum dot inks enable blade-coating infrared solar cells // Front Optoelectron. 2023. V. 16. № 1, P. 27. https://doi.org/10.1007/s12200-023-00085-0
- Lee J., Crampton K.T., Tallarida N., Apkarian V.A. Visualizing vibrational normal modes of a single molecule with atomically confined light // Nature. 2019. V. 568. № 7750. P. 78−82. https://doi.org/10.1038/s41586-019-1059-9
- Kasimov R.K., Arzhanov A.I., Sedykh K.O., Golikov A.D., Galanova V.S., Gladush Y.G., Kovalyuk V.V., Naumov A.V., Goltsman G.N. Single photon source based on CdSe/CdS/ZnS quantum dots on silicon nitride waveguides // Book Single photon source based on CdSe/CdS/ZnS quantum dots on silicon nitride waveguides. Editor. 2025.
- Rempel A.A., Ovchinnikov O.V., Weinstein I.A., Rempel S.V., Kuznetsova Y.V., Naumov A.V., Smirnov M.S., Eremchev I.Y., Vokhmintsev A.S., Savchenko S.S. Quantum dots: Modern methods of synthesis and optical properties //Russian Chemical Reviews. 2024. V. 93. № 4. P. RCR5114. https://doi.org/10.59761/rcr5114
- Castro C.E., Kilchherr F., Kim D.N., Shiao E.L., Wauer T., Wortmann P., Bathe M., Dietz H. A primer to scaffolded DNA origami // Nat. Methods // 2011. V. 8. № 3. P. 221−229. https://doi.org/10.1038/nmeth.1570
- Kolbeck P.J., Dass M., Martynenko I.V., van Dijk-Moes R.J.A., Brouwer K.J.H., van Blaaderen A., Vanderlinden W., Liedl T., Lipfert J. A DNA origami fiducial for accurate 3d afm imaging // bioRxiv. 2022. https://doi.org/10.1101/2022.11.11.516090
- Matsunaga Y., Fuchigami S., Ogane T., et al. End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images // Sci Rep. 2023. V. 13. P. 129. https://doi.org/10.1038/s41598-022-27057-2
- Villarrubia J.S. Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation // Journal of Research of the National Institute of Standards and Technology. 1997. V. 102. № 4. P. 425. https://doi.org/10.6028/jres.102.030
- Nečas D., Klapetek P. Gwyddion: An open-source software for spm data analysis // Open Physics. 2012. V. 10. № 1. P. 181−188. https://doi.org/10.2478/s11534-011-0096-2
- Weiden J., Basting M.M.C. DNA origami nanostructures for controlled therapeutic drug delivery // Current Opinion in Colloid & Interface Science. 2021. V. 52. P. 101411. https://doi.org/10.1016/j.cocis.2020.101411
- Wang W.X., Douglas T.R., Zhang H., Bhattacharya A., Rothenbroker M., Tang W., Sun Y., Jia Z., Muffat J., Li Y., Chou L.Y.T. Universal, label-free, single-molecule visualization of DNA origami nanodevices across biological samples using origamifish // Nat. Nanotechnol., 2024. V. 19. № 1. P. 58−69. https://doi.org/10.1038/s41565-023-01449-5
- Karimullin K.R., Arzhanov A.I., Eremchev I.Y., Kulnitskiy B.A., Surovtsev N.V., Naumov A.V. Combined photon-echo, luminescence and raman spectroscopies of layered ensembles of colloidal quantum dots // Laser Physics. 2019. V. 29. № 12. P. 124009. https://doi.org/10.1088/1555-6611/ab4bdb
- Karimullin K.R., Arzhanov A.I., Naumov A.V. Preparation and optical characterization of nanocomposites with semiconductor colloidal quantum dots // Bulletin of the Russian Academy of Sciences: Physics. 2017. V. 81. № 12. P. 1396−1400. https://doi.org/10.3103/S1062873817120164
- Kozhina E., Bedin S., Martynov A., Andreev S., Piryazev A., Grigoriev Y., Gorbunova Y., Naumov A. Ultrasensitive optical fingerprinting of biorelevant molecules by means of sers-mapping on nanostructured metasurfaces // Biosensors. 2023. V. 13. № 1. P. 46. https://doi.org/10.3390/bios13010046
- Li K., Qin W., Xu Y., Peng T., Li D. Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution // Frontiers of Optoelectronics. 2015. V. 8. № 4. P. 379−393. https://doi.org/10.1007/s12200-014-0423-5
- Li S., Shi B., He D., Zhou H., Gao Z. DNA origami-mediated plasmonic dimer nanoantenna-based sers biosensor for ultrasensitive determination of trace diethylstilbestrol // Journal of Hazardous Materials. 2023. V. 458. P. 131874. https://doi.org/10.1016/j.jhazmat.2023.131874
- Prinz J., Heck C., Ellerik L., Merk V., Bald I. DNA origami based au–ag-core–shell nanoparticle dimers with single-molecule sers sensitivity // Nanoscale. 2016. V. 8. № 10. P. 5612−5620. https://doi.org/10.1039/c5nr08674d
- Rajendran A., Endo M., Sugiyama H. Single‐molecule analysis using DNA origami // Angewandte Chemie International Edition. 2011. V. 51. № 4. P. 874−890. https://doi.org/10.1002/anie.201102113
- Adhikari S., Smit R., Orrit M. Future paths in cryogenic single-molecule fluorescence spectroscopy // The Journal of Physical Chemistry C. 2023. V. 128. № 1. P. 3−18. https://doi.org/10.1021/acs.jpcc.3c06564
- Adhikari S., Orrit M. Progress and perspectives in single-molecule optical spectroscopy // The Journal of Chemical Physics. 2022. V. 156. № 16. P. 160903. https://doi.org/10.1063/5.0087003
- Naumov A.V., Gorshelev A.A., Gladush M.G., Anikushina T.A., Golovanova A.V., Köhler J., Kador L. Micro-refractometry and local-field mapping with single molecules // Nano Letters. 2018. V. 18. № 10. P. 6129−6134. https://doi.org/10.1021/acs.nanolett.8b01753
- Gladush M.G., Anikushina T.A., Gorshelev A.A., Plakhotnik T.V., Naumov A.V. Dispersion of lifetimes of excited states of single molecules in organic matrices at ultralow temperatures // Journal of Experimental and Theoretical Physics. 2019. V. 128. № 5. P. 655−663. https://doi.org/10.1134/s1063776119030038
Supplementary files


