PHASE BEHAVIOR OF FISH GELATIN–AGAR AQUEOUS MIXTURES
- Autores: Voron’ko N.G.1, Kuzina T.D.1, Kolotova D.S.1, Kuchina Y.A.1, Zuev Y.F.2, Derkach S.R.1
-
Afiliações:
- Murmansk Arctic University
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center", Russian Academy of Sciences
- Edição: Volume 87, Nº 5 (2025)
- Páginas: 469–488
- Seção: Articles
- ##submission.dateSubmitted##: 02.12.2025
- ##submission.datePublished##: 15.09.2025
- URL: https://journals.rcsi.science/0023-2912/article/view/355491
- DOI: https://doi.org/10.7868/S3034543X25050019
- ID: 355491
Citar
Resumo
Palavras-chave
Sobre autores
N. Voron’ko
Murmansk Arctic University
Email: voronkong@mauniver.ru
Murmansk, Russia
T. Kuzina
Murmansk Arctic UniversityMurmansk, Russia
D. Kolotova
Murmansk Arctic UniversityMurmansk, Russia
Yu. Kuchina
Murmansk Arctic UniversityMurmansk, Russia
Yu. Zuev
Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center", Russian Academy of SciencesKazan, Russia
S. Derkach
Murmansk Arctic UniversityMurmansk, Russia
Bibliografia
- Калинина М.А., Вацадзе С.З. Коллоидная химия супрамолекулярных систем в современном ландшафте российской науки // Коллоидный журнал. 2022. Т. 84. № 5. С. 499–502. https://doi.org/10.31857/S0023291222600341
- Zueva O.S., Rukhlov V.S., Zuev Yu.F. Morphology of ionic micelles as studied by numerical solution of the Poisson equation // ACS Omega. 2022. V. 7. № 7. P. 6174–6183. https://doi.org/10.1021/acsomega.1c06665
- Миргалеев Г.М., Шилова С.В. Связывание флуоресцеина хитозаном и полиэлектролитным комплексом на его основе в водных растворах // Коллоидный журнал. 2024. Т. 86. №3. С. 379–389. https://doi.org/10.31857/S0023291224030074
- Деркач С.Р., Воронько Н.Г., Маклакова А.А., Кондратюк Ю.В. Реологические свойства гелей желатины с κ-каррагинаном: роль полисахарида // Коллоидный журнал. 2014. Т. 76. № 2. С. 164–170. http://doi.org/10.7868/S0023291214020025
- Pathak J., Rawat K., Priyadarshini E., Bohidar H.B. Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding // Advances in Colloid and Interface Science. 2017. V. 250. P. 40–53.https://doi.org/10.1016/j.cis.2017.10.006
- Кокшаров С.А., Алеева С.В., Лепилова О.В., Кричевский Г.Е., Фидоровская Ю.С. Свойства гидроколлоидов альгината натрия при сорбционном связывании папаина // Коллоидный журнал. 2021. Т. 83. № 6. С. 560–675. https://doi.org/10.31857/S0023291221060070
- Кокшаров С.А., Лепилова О.В., Алеева С.В. и др. Влияние гидродинамических условий синтеза коллоидной системы альгинат натрия–папаин на сорбционные свойства биокомпозита // Коллоидный журнал. 2023. Т. 85. № 4. С. 511–525. https://doi.org/10.31857/S0023291223600244
- Turgeon S.L., Laneuville S.I. Protein + polysaccharide coacervates and complexes: From scientific back-ground to their application as functional ingredients in food products // In: Modern biopolymer science. Kasapis S., Norton I.T., Ubbink J.B. Eds. London: Academic Press. 2009. P. 327–363. http://doi.org/10.1016/B978-0-12-374195-0.00011-2
- Semenova, M. Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles // Current Opinion in Colloid & Interface Science. 2017. V. 28. P. 15–21. https://doi.org/10.1016/j.cocis.2016.12.003
- Antipin I.S., Alfimov M.V., Arslanov V.V., et al. Functional supramolecular systems: design and application // Russian Chemical Reviews. 2021. V. 90. № 8. P. 895–1107. https://doi.org/10.1070/rcr5011
- Li H., Wang T., Hu Y., Wu J., Van der Meeren P. Designing delivery systems for functional ingredients by protein/polysaccharide interactions // Trends in Food Science & Technology. 2022. V. 119. P. 272–287. https://doi.org/10.1016/j.tifs.2021.12.007
- Falsafi S.R., Rostamabadi H., Sambroska K., et al. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes // Pharmacological Research. 2022. V. 178. № 15. P. 106164. https://doi.org/10.1016/j.phrs.2022.106164
- Zhang L., Liang R., Li L. The interaction between anionic polysaccharides and legume protein and their influence mechanism on emulsion stability // Food Hydrocolloids. 2022. V. 131. P. 107814. https://doi.org/10.1016/j.foodhyd.2022.107814
- Cheng C., Tu Z., Wang H. pH-induced complex coacervation of fish gelatin and carboxylated chitosan: Phase behavior and structural properties // Food Research International. 2023. V. 167. P. 112652. http://doi.org/10.1016/j.foodres.2023.112652
- Xue H., Feng J., Tang Y,. et al. Research progress on the interaction of the polyphenol–protein–polysaccharide ternary systems // Chemical and Biological Technologies in Agriculture. 2024. V. 11. № 1. P. 95. https://doi.org/10.1186/s40538-024-00632-7
- Gentile L. Protein–polysaccharide interactions and aggregates in food formulations // Current Opinion in Colloid & Interface Science. 2020. V. 48. P. 18–27. https://doi.org/10.1016/j.cocis.2020.03.002
- Sun X., Wang H., Li S., et al. Maillard-type protein–polysaccharide conjugates and electrostatic protein–polysaccharide complexes as delivery vehicles for food bioactive ingredients: Formation, types, and applications // Gels. 2022. V. 8. № 2. P. 1–27. https://doi.org/10.3390/gels8020135
- Wang H., Lin X., Zhu J. et al. Encapsulation of lutein in gelatin type A/B-chitosan systems via tunable chains and bonds from tweens: Thermal stability, rheologic property and food 2D/3D printability // Food Research International. 2023. V. 173. № 1. P. 113392. http://doi.org/10.1016/j.foodres.2023.113392
- Xue J., Luo Y. Protein-polysaccharide nanocomplexes as nanocarriers for delivery of curcumin: a comprehensive review on preparation methods and encapsulation mechanisms // Journal of Future Foods. 2023. V. 3. № 2. P. 99–114. https://doi.org/10.1016/j.jfutfo.2022.12.002
- Li Y., Cheng Z., Zhang J., et al. Effect of protein–polysaccharide hybrid gelator system on the material properties and 3D extrusion printability of mashed potatoes // Journal of Food Science. 2024. V. 89. № 4. P. 2347–2358. https://doi.org/10.1111/1750-3841.17003
- Razzak M.A., Kim M., Chung D. Elucidation of aqueous interactions between fish gelatin and sodium alginate // Carbohydrate polymers. 2016. V. 148. P. 181–188. https://doi.org/10.1016/j.carbpol.2016.04.035
- Phawaphuthanon N., Yu D., Ngamnikom P., Shin I.-S., Chung D. Effect of fish gelatin-sodium alginate interactions on foam formation and stability // Food Hydrocolloids. 2019. V. 88. P. 119–126. https://doi.org/10.1016/j.foodhyd.2018.09.041
- Zhang J., Du H., Ma N., et al. Effect of ionic strength and mixing ratio on complex coacervation of soy protein isolate/Flammulina velutipes polysaccharide // Food Science and Human Wellness. 2022. V. 12. № 1. P. 183–191. https://doi.org/10.1016/j.fshw.2022.07.006
- Kolotova D.S., Borovinskaya E.V., Bordiyan V.V., et al. Phase behavior of aqueous mixtures of sodium alginate with fish gelatin: Effects of pH and ionic strength // Polymers. 2023. V. 15. № 10. P. 2253. https://doi.org/10.3390/polym15102253
- Tong L., Kang X., Fang Q., et al. Rheological properties and interactions of fish gelatin‐κ‐carrageenan polyelectrolyte hydrogels: The effects of salt // Journal of Texture Studies. 2021. V. 53. № 1. P. 122–132. https://doi.org/10.1111/jtxs.12624
- Voron’ko N.G., Derkach S.R., Vovk M.A., Tolstoy P.M. Formation of κ-carrageenan–gelatin polyelectrolyte complexes studied by 1H NMR, UV spectroscopy and kinematic viscosity measurements // Carbohydrate Polymers. 2016. V. 151. P. 1152–1161. https://doi.org/10.1016/j.carbpol.2016.06.060
- Boral S., Bohidar H.B. Effect of ionic strength on surface-selective patch bindung-induced phase separation and coacervation in similarly charged gelatin–agar molecular systems // The Journal of Physical Chemistry. 2010. V. 114. № 37. P. 12027–12035. https://doi.org/10.1021/jp105431t
- Pathak J., Rawat K., Bohidar H.B. Surface patch binding and mesophase separation in biopolymeric polyelectrolyte–polyampholyte solutions // International Journal of Biological Macromolecules. 2014. V. 63. P. 29–37. http://doi.org/10.1016/j.ijbiomac.2013.10.020
- Roy S., Rhim J.-W. Gelatin/agar-based functional film integrated with Pickering emulsion of clove essential oil stabilized with nanocellulose for active packaging applications // Colloids and Surfaces A. 2021. V. 627. P. 127220. http://doi.org/10.1016/j.colsurfa.2021.127220
- Du L., Ru Y., Weng H., et al. Agar-gelatin Maillard conjugates used for Pickering emulsion stabilization // Carbohydrate Polymers. 2024. V. 340. № 4. P. 122293. https://doi.org/10.1016/j.carbpol.2024.122293
- Mendoza-Wilson A.M., Balandran-Quintana R.R., Azamar-Barrios J.A., Cabellos J.L. Effects of adding sorghum procyanidins on the structure, molecular interactions, and thermal properties of agar-glycerol-gelatin films // Journal of Computational Biophysics and Chemistry. 2024. V. 23. № 5. P. 605–622. https://doi.org/10.1142/S2737416524500078
- Isik I., Yenipazar H., Saygün A., et al. Aloe vera oil-added agar gelatin edible films for kashar cheese packaging // ACS Omega. 2023. V. 8. № 21. P. 18516–18522. https://doi.org/10.1021/acsomega.3c00147
- Fathiraja P., Gopalrajan S., Kumar K., Obaiah M.C. Augmentation of bioactivity with addition of clove essential oil into fish scale gelatin, agar and chitosan composite film and biodegradable features // Polymer Bulletin. 2024. V. 81. № 6. P. 5329–5357. https://doi.org/10.1007/s00289-023-04961-9
- Boonprab K., Chirapat A., Effendy W.N.A. Edible-algae base composite film containing gelatin for food packaging from macroalgae, Gracilaroid (Gracilaria fisheri) // Journal of The Science of Food and Agriculture. 2024. V. 104. № 11. P. 6987–7001. https://doi.org/10.1002/jsfa.13531
- Kim H.-J., Roy S., Rhim J.-W. Gelatin/agar-based color-indicator film integrated with Clitoria ternatea flower anthocyanin and zinc oxide nanoparticles for monitoring freshness of shrimp // Food Hydrocolloids. 2022. V. 124. P. 107294. https://doi.org/10.1016/j.foodhyd.2021.107294
- How Y. H., Wong L. X., Kong I., Nyam K.L., Pui L.P. Development of multilayered pH-sensitive chitosan–gelatin–agar intelligent film incorporated with roselle anthocyanin extract for monitoring of the freshness of snapper fish // Food and Bioprocess Technology. 2024. V. 17. № 11. P. 4177–4194. https://doi.org/10.1007/s11947-024-03377-1
- Garcia-Orue I., Santos-Vizcaino E., Uranga J., et al. Agar/gelatin hydro-film containing EGF and Aloe vera for effective wound healing // Journal of Materials Chemistry B. 2023. V. 11. № 29. P. 6896–6910. http://doi.org/10.1039/D2TB02796H
- Razuidi D.A.A., Mahat M., Sofian Z.M., et al. Synthesis and characterization of porous, electro-conductive chitosan–gelatin–agar-based PEDOT: PSS scaffolds for potential use in tissue engineering // Polymers. 2021. V. 13. № 17. P. 2901. https://doi.org/10.3390/polym13172901
- Zhou X., Yu J., Qian S., Chen Y. Study on texture detection of gelatin-agar composite gel based on bionic chewing // Journal of Food Measurement and Characterization. 2023. V. 17. № 2. P. 5093–5102. https://doi.org/10.1007/s11694-023-02016-1
- González-Maldonado J., Ramírez-Valverde G., Rangel-Santos R., et al. Ram semen quality after supplementation with gelatin, agar or alginate prior to cooling storage // Reproduction in Domestic Animals. 2023. V. 58. № 10. P. 1487–1493. https://doi.org/10.1111/rda.14463
- Haug I.J., Draget K.I. Gelatin // In: Handbook of hydrocolloids. Phillips G.O., Williams P.A. Eds. Boca Raton, Boston, New York, Washington DC: CRC Press. 2009. P. 142–163. https://doi.org/10.1533/9781845695873.142
- Derkach S.R., Voron’ko N.G., Kuchina Yu.A., Kolotova D.S. Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies // Polymers. 2020. V. 12. № 12. P. 3051. http://doi.org/10.3390/polym12123051
- Joy J.M., Padmaprakashan A., Pradeep A., et al. A review on fish skin-derived gelatin: elucidating the gelatin peptides – preparation, bioactivity, mechanistic insights, and strategies for stability improvement // Foods. 2024. V. 13. № 17. P. 2793. https://doi.org/10.3390/foods13172793
- Derkach S.R., Voron’ko N.G., Kuchina Yu.A., et al. Rheological properties of fish and mammalian gelatin hydrogels as basis for potential practical formulation // Gels. 2024. V. 10. № 8. P. 486. https://doi.org/10.3390/gels10080486
- Oliveira V. de M., Assis C.R.D., Costa B. de A.M., et al. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products // Journal of Molecular Structure. 2021. V. 1224. P. 129023. http://doi.org/10.1016/j.molstruc.2020.129023
- Da Silva C.G., Rodrigues A.S., Lima A.C., et al. Gelatin extracted from jundiá skin (Rhamdia quelen): An alternative to the discarded by-product // Food Research International. 2022. V. 161. P. 111829. http://doi.org/10.1016/j.foodres.2022.111829
- Shi X.-D., Huang J.-J., Wu J.-L., et al. Fabrication, interaction mechanism, functional properties, and applications of fish gelatin-polysaccharide composites: A review // Food Hydrocolloids. 2021. V. 122. № 15. P. 107106. https://doi.org/10.1016/j.foodhyd.2021.107106
- Armisen R., Galatas F. Agar // In: Handbook of hydrocolloids. Phillips G.O., Williams P.A. Eds. Boca Raton, Boston, New York, Washington DC: CRC Press. 2009. P. 82–107. https://doi.org/10.1533/9781845695873.82
- Usov A.I. Polysaccharides of the red algae // Advances in carbohydrate chemistry and biochemistry. 2011. V. 65. P. 115–217. https://doi.org/10.1016/b978-0-12-385520-6.00004-2
- Muthukumar J., Chidambaram R., Sukumaran S. Sulfated polysaccharides and its commercial applications in food industries–a review // Journal of Food Science and Technology. 2020. V. 58. № 7. P. 2453–2466. https://doi.org/10.1007/s13197-020-04837-0
- Nishinari K., Fang Y. Relation between structure and rheological/thermal properties of agar / A mini-review on the effect of alkali treatment and the role of agaropectin // Food Structure. 2017. V. 13. P. 24–34. http://doi.org/10.1016/j.foostr.2016.10.003
- Rochas C., Lahaye M., Yaphe W. Sulphate content of carrageenan and agar determined by infrared spectroscopy // Botanica Marina. 1986. V. XXIX. P. 335–340. https://doi.org/10.1515/botm.1986.29.4.335
- Derkach S.R., Kuchina Yu.A., Baryshnikov A.V., Kolotova D.S., & Voron’ko N.G. Tailoring cod gelatin structure and physical properties with acid and alkaline extraction // Polymers. 2019. V. 11. № 10. P. 1724. http://doi.org/10.3390/polym11101724
- Zuev Yu.F., Derkach S.R., Bogdanova L.R., et al. Underused marine resources: Sudden properties of cod skin gelatin gel // Gels. 2023. V. 9. № 12. P. 990. https://doi.org/10.3390/gels9120990
- Derkach S.R., Kolotova D.S., Voron’ko N.G., Obluchinskaya E.D., Malkin A.Ya. Rheological properties of fish gelatin modified with Sodium alginate // Polymers. 2021. V. 13. № 5. P. 743. http://doi.org/10.3390/polym13050743
- Derkach S.R., Voron’ko N.G., Sokolan N.I., Kolotova D.S., Kuchina Yu.A. Interactions between gelatin and sodium alginate: UV and FTIR studies // Journal of Dispersion Science and Technology. 2020. V. 41. № 5. P. 690–698. http://doi.org/10.1080/01932691.2019.1611437
- Handbook of biochemistry and molecular biology. Lundblad R.L., Macdonald F.M. Eds. Boca Raton. Boston.London. New York: CRC Press. 2010. https://doi.org/10.1201/b21846
- Handbook of chemistry and physics. Lide D.R. Ed. Boca Raton: CRC Press LLC. 2004.
Arquivos suplementares

