Microscopic modeling of magnetorheological properties in magnetic elastomers

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper introduces a microscopic model explaining the magnetorheological properties of magnetic elastomers, which are composed of micron-sized magnetizable, without own magnetic moment, particles within a polymer. The study examines composites that are initially isotropic (made without a magnetic field) and anisotropic (polymerized under a magnetic field). Applying an external magnetic field to the composites causes internal anisotropic structures to form (or expand), leading to a notable increase in the material’s shear modulus. The theoretical findings are in good agreement with experimental results.

Авторлар туралы

A. Musikhin

Ural Federal University named after B.N. Yeltsin

Email: Antoniusmagna@yandex.ru
Lenin Avenue, 51, Yekaterinburg, 620002 Russia

A. Zubarev

Ural Federal University named after B.N. Yeltsin

Lenin Avenue, 51, Yekaterinburg, 620002 Russia

Әдебиет тізімі

  1. Boczkowska A., Awietjan S.F. Tuning active magnetorheological elastomers for damping applications // Materials Science Forum. 2010. V. 636–637. P. 766. https://doi.org/10.4028/www.scientific.net/MSF.636-637.766
  2. Lopez-Lopez M.T., Scionti G., Oliveira A.C., Duran J.D.G., Campos A., Alaminos M., Rodriguez I.A. Generation and characterization of novel magnetic field-responsive biomaterials // PLOS ONE. 2015. Vol. 10. № 7. P. e0133878. https://doi.org/10.1371/journal.pone.0133878
  3. Bira N., Dhagat P., Davidson J.R. A review of magnetic elastomers and their role in soft robotics // Front. Robot. AI. 2020. V. 7. P. 588391. https://doi.org/10.3389/frobt.2020.588391
  4. Kurlyandskaya G.V., Blyakhman F.A., Makarova E.B., et al. Functional magnetic ferrogels: From biosensors to regenerative medicine // AIP Advances. 2020. V. 10. № 12. P. 125128. https://doi.org/10.1063/9.0000021
  5. Rajan A., Sahu N. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy // J. Nanopart Res. 2020. V. 22. P. 319. https://doi.org/10.1007/s11051-020-05045-9
  6. Vilas-Boas V. Magnetic hyperthermia for cancer treatment: Main parameters affecting the outcome of in vitro and in vivo studies // Molecules. 2020. V. 25 № 12. P. 2874. https://doi.org/10.3390/molecules25122874
  7. Li Lingbing. Handbook of materials for nanomedicine: Polymeric nanomaterials. Jenny Stanford Publishing. 2020.
  8. Chung H-J, Parsons A., Zheng L. Magnetically controlled soft robotics utilizing elastomers and gels in actuation: A review // Adv. Intell. Syst. 2021. V. 3. № 3. P. 2000186. https://doi.org/10.1002/aisy.202000186
  9. Kaewruethai T., Laomeephol C., Pan Y., Luckanagul J. Multifunctional polymeric nanogels for biomedical applications // Gels. 2021. V. 7. P. 228. https://doi.org/10.3390/GELS7040228
  10. Sung B., Kim M-H., Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications // Bioeng. Transl. Med. 2021. V. 6. № 1. P. e10190. https://doi.org/10.1002/btm2.10190
  11. Imran M.M., Affandi A.M., Alam M.M., Khan A., Khan A.I. Advanced biomedical applications of iron oxide nanostructures based ferrofluids // Nanotechnology. 2021. V. 32. № 42. P. 422001. https://doi.org/10.1088/1361-6528/ac137a
  12. Naghdi M., et al. Magnetic nanocomposites for biomedical applications // Advances in Colloid and Interface Science. 2022. V. 308. P. 102771. https://doi.org/10.1016/j.cis.2022.102771
  13. Socoliuc V., Avdeev M.V., Kuncser V., Turcu R., Tombácz E., Vékás L. Ferrofluids and bio-ferrofluids: looking back and stepping forward // Nanoscale. 2022. V. 14. № 13. P. 4786–4886. https://doi.org/10.1039/D1NR05841J
  14. Montiel Schneider M.G., Martín M.J., Otarola J., Vakarelska E., Simeonov V., Lassalle V., Nedyalkova M. Biomedical applications of iron oxide nanoparticles: Current insights, progress and perspectives // Pharmaceutics. 2022. V. 14. № 1. P. 204. https://doi.org/10.3390/pharmaceutics14010204
  15. Sutrisno J., Purwanto A., Mazlan S.A. Recent progress on magnetorheological solids: Materials, fabrication, testing, and applications // Adv. Eng. Mater. 2015. V. 17. № 5. P. 563–597. https://doi.org/10.1002/adem.201400258
  16. Choi S.B., Li W., Yu M., Du H., Fu J., Do P.X. State of the art of control schemes for smart systems featuring magneto-rheological materials // Smart Mater. Struct. 2016. V. 25. № 4. P. 043001. https://doi.org/10.1088/0964-1726/25/4/043001
  17. Filipcsei G., Csetneki I., Szilagyi A., Zrinyi M. Magnetic field-responsive smart polymer composites // Adv. Polym. Sci. 2007. V. 206. P. 137–189. https://doi.org/10.1007/12_2006_104
  18. Shamonin M., Kramarenko E.Yu. Highly responsive magnetoactive elastomers // Novel Magnetic Nanostructures. Amsterdam: Elsevier, 2018. P. 221–245. https://doi.org/10.1016/B978-0-12-813594-5.00007-2
  19. Gundermann T., Cremer P., Löwen H., Menzel A.M., Odenbach S. Statistical analysis of magnetically soft particles in magnetorheological elastomers // Smart Mater. Struct. 2017. V. 26. № 4. P. 045012. https://doi.org/10.1088/1361-665X/aa5f96
  20. Stepanov G.V., Abramchuk S.S., Grishin D.A., Nikitin L.V., Kramarenko E.Y., Khokhlov A.R. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers // Polymer. 2007. V. 48. № 2. P. 488–495. https://doi.org/10.1016/j.polymer.2006.11.044
  21. Stoll A., Mayer M., Monkman G.J., Shamonin M. Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response // J. Appl. Polym. Sci. 2014. V. 131. № 2. P. 39793. https://doi.org/10.1002/app.39793
  22. Abramchuk S.S., Grishin D.A., Kramarenko E.Yu., Stepanov G.V., Khokhlov A.R. Effect of a homogeneous magnetic field on the mechanical behavior of soft magnetic elastomers under compression // Polymer Science A. 2006. V. 48. № 2. P. 138–145. https://doi.org/10.1134/S0965545X06020064
  23. Stepanov G.V., Kramarenko E.Y., Semerenko D.A. Magnetodeformational effect of the magnetoactive elastomer and its possible applications // J. Phys. Conf. Ser. 2013. V. 412. P. 012031. https://doi.org/10.1088/1742-6596/412/1/012031
  24. Galipeau E., Ponte Castañeda P. Giant field-induced strains in magnetoactive elastomer composites // Proc. Royal Soc. A. 2013. V. 469. № 2158. P. 20130385. https://doi.org/10.1098/rspa.2013.0385
  25. Yu M., Luo H., Fu J., Yang P. The field-dependent conductivity of dimorphic magnetorheological gel incorporated with iron nanowire // J. Intelligent Mater. Syst. Struct. 2018. V. 29. № 1. P. 24–31. https://doi.org/10.1177/1045389X17733056
  26. Bica I. Influence of the magnetic field on the electric conductivity of magnetorheological elastomers // J. Ind. Eng. Chem. 2010. V. 16. № 3. P. 359–363. https://doi.org/10.1016/j.jiec.2010.01.034
  27. Kostrov S.A., Shamonin M., Stepanov G.V., Kramarenko E.Yu. Magnetodielectric response of soft magnetoactive elastomers: effects of filler concentration and measurement frequency // Int. J. Molec. Sci. 2019. V. 20. № 9. P. 2230. https://doi.org/10.3390/ijms20092230
  28. Костров С.А., Городов В.В., Музафаров А.М., Крамаренко Е.Ю. Сравнительный анализ магнитореологического эффекта в мягких изотропных и анизотропных магнитоактивных эластомерах // Высокомолекулярные соединения. Серия Б. 2022. Т. 64. № 6. P. 471–480. https://doi.org/10.31857/S2308113922700231
  29. Chen L., Gong X.L., Li W.H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers // Smart Mater. Struct. 2007. V. 16. № 6. P. 2645. https://doi.org/10.1088/0964-1726/16/6/069
  30. Khanouki M.A., Sedaghati R., Hemmatian M. Experimental characterization and microscale modeling of isotropic and anisotropic magnetorheological elastomers // Composites. B. 2019. V. 176. P. 107311. https://doi.org/10.1016/j.compositesb.2019.107311
  31. Jolly M.R., Carlson J.D., Munoz B.C. model of the behaviour of magnetorheological materials // Smart Mater Struct. 1996. V. 5. P. 607.
  32. Ivaneyko D., Toshchevikov V., Saphiannikova M. Dynamic-mechanical behaviour of anisotropic magneto-sensitive elastomers // Polymer. 2018. V. 147. P. 95–107. https://doi.org/10.1016/j.polymer.2018.04.057
  33. Borin D., Stepanov G., Bakhtiiarov A., et al. Magnetorheological effect of magnetoactive elastomer with a permalloy filler // Polymers. 2020. V. 12. № 10. P. 1–25. https://doi.org/10.3390/polym12102371
  34. Hoang N., Zhang N., Du H. Adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction // Smart Materials and Structures. 2010. V. 20. № 1. P. 015019. https://doi.org/10.1088/0964-1726/20/1/015019
  35. Gila-Vilchez C., Bonhome-Espinosa A., Kuzhir P., Zubarev A., Duran J.D.G., et al. Rheology of magnetic alginate hydrogels // J. Rheol. 2018. V. 62. № 5. P. 1083–1096. https://doi.org/10.1122/1.5028137
  36. Borin D., Gunther D., Hintze C., Heinrich G., Odenbach S. The level of cross-linking and the structure of anisotropic magnetorheological elastomers // J. Magnetism and Magnetic Materials. 2012. V. 324. № 21. P. 3452–3454. https://doi.org/10.1016/j.jmmm.2012.02.063
  37. Zubarev A.Yu., et al. Hysteresis of the magnetic properties of soft magnetic gels // Soft Matter. 2016. V. 12. № 30. P. 6473–6480. https://doi.org/10.1039/C6SM01257D
  38. See H., Doi M. Aggregation kinetics in electro-rheological fluids // J. Phys. Soc. Jpn. 1991. V. 60. P. 2778–2782. https://doi.org/10.1143/JPSJ.60.2778
  39. Hill T.L. Statistical mechanics: Principles and selected applications. Courier Corporatiopn. 2013.
  40. Landau L.D., Lifshitz E.M. Electrodynamics of continuous media. New York: Pergamon. 1960.
  41. Bozorth R.M. Ferromagnetism. Wiley, New York. 1993.
  42. Rosensweig R. Ferrohydrodynamics. Cambridge University Press, Cambridge. 1985.
  43. Pokrovskii V.N. Statistical Mechanics of Dilute Suspensions. Moscow: Nauka. 1978.
  44. Krieger I.M., Dougherty T.J. A mechanism for non-newtonian flow in suspension of rigid spheres // Trans. Soc. Rheol. 1959. V. 3. № 1. P. 137–152. https://doi.org/10.1122/1.548848
  45. Barnes H.A., Hutton J.F., Walters K. An introduction to rheology. Amsterdam: Elsevier. 1989.
  46. Batchelor G. The stress generated in a non-dilute suspension of elongated particles by pure straining motion // J. Fluid Mech. 1971. V. 46. P. 813–29.
  47. Biller A.M., Stolbov O.V., Raikher Yu.L. Modeling of particle interactions in magnetorheological elastomers // J.Applied Physics. 2014. V. 116. № 1. P. 114904. https://doi.org/10.1063/1.4895980
  48. Shouhu Xuan, Yangguang Xu, Taixiang Liu & Xinglong Gong. Recent progress on the magnetorheological plastomers // International Journal of Smart and Nano Materials. 2015. V. 6. № 2. P. 135–148. https://doi.org/10.1080/19475411.2015.1062437

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».