TRANSFORMATION OF AQUEOUS METHYL METHACRYLATE SOLUTION INTO STABLE MONODISPERSE LATEX VIA POLYMERIZATION INITIATED BY HYDROQUINONE–POTASSIUM PERSULFATE SYSTEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this work was to identify the possibilities of synthesizing stable latex with a narrow particle distribution by homogeneous polymerization in an aqueous solution of methyl methacrylate. The polymerization of methyl methacrylate was first carried out under static conditions in an aqueous solution of the hydroquinone–potassium persulfate oxidation-reduction system. It was assumed that semiquinone anion radicals formed at the intermediate stage of hydroquinone oxidation can participate in the reactions of termination of growing radicals and by changing the molecular parameters of polymer molecules, affect the process of formation of latex particles. The article presents the results of the study of the colloidal parameters of the obtained latex, which show that the selected polymerization conditions allow reproducibly synthesizing monodisperse stable latex.

About the authors

A. A. Hovhannisyan

Scientific-Technological Center of Organic and Pharmaceutical Chemistry

Email: hovarnos@gmail.com
Erevan, 26 Azatutyan Ave, 0014 Armenia

G. K. Grigoryan

Scientific-Technological Center of Organic and Pharmaceutical Chemistry

Erevan, 26 Azatutyan Ave, 0014 Armenia

A. G. Nadaryan

Scientific-Technological Center of Organic and Pharmaceutical Chemistry

Erevan, 26 Azatutyan Ave, 0014 Armenia

N. H. Grigoryan

Scientific-Technological Center of Organic and Pharmaceutical Chemistry

Erevan, 26 Azatutyan Ave, 0014 Armenia

References

  1. Grant T.D. Shouldice, Gerald A. Vandezande, Rudin A. Practical aspects of the emulsifier-free emulsion polymerization of styrene // Eur. Polym. J. 1994. V. 30. № 2. P. 179–183. https://doi.org/10.1016/0014-3057(94)90157-0
  2. Safinejad A., Pourmahdian S., Hadavand B.S. Emulsifier-free emulsion polymerization of acrylonitrile-butadiene-carboxylic acid monomers: a kinetic study based on polymerization pressure profile // J. Dispers. Sci. Technol. 2020. V. 41. № 2. P. 157–167. https://doi.org/10.1080/01932691.2018.1496835
  3. Chad E. Reese, Sanford A. Asher. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals // J. Colloid Interface Sci. 2002. V. 248. № 1. P. 41–46. https://doi.org/10.1006/jcis.2001.8193
  4. Prokopov N.I., Gritskova I. A., Cherkasov V.R., Chalykh A.E. Synthesis of monodisperse functional polymer microspheres for immunological studies // Russ. Chem. Rev. 1996. V. 65. № 2. P. 167–180. https://doi.org/10.1070/RC1996v065n02ABEH000205
  5. Oganesyan A.A. Free-radical polymerization and phase formation in heterogeneous monomer/water systems, Doctoral (Chem.) Dissertation, Moscow: Moscow, Inst. of Fine Chemical Technology. 1986. (in Russ)
  6. Oganesyan A.A., Gukasyan A.V., Matsoyan S.G. Diffusion and polymerization of styrene in an aqueous solution of potassium persulfate under static conditions // Dokl. Phys. Chem. 1985. V. 281, № 4. p. 377. (in Russ)
  7. Oganesyan, A.A., Khaddazh, M., Gritskova, I.A. et al. Polymerization in the static heterogeneous system styrene-water in the presence of methanol // Theor. Found. Chem. Eng. 2013. V. 47 P. 600–603. https://doi.org/10.1134/S0040579513050230
  8. Nankai An, Xi Chen, Mingxin Zheng, Jinying Yuan. Colloidal crystals of monodisperse fluoro-nanoparticles by aqueous polymerization-induced self-assembly // Chem. Commun. 2023. V. 59. P. 7595–7598. https://doi.org/10.1039/D3CC01019H
  9. Zhong F., Pan C.-Y. Dispersion polymerization versus emulsifier-free emulsion polymerization for nano-object fabrication: A comprehensive comparison // Macromol. Rapid Commun. 2022. V. 43. № 3. P. 2100566. https://doi.org/10.1002/marc.202100566
  10. Peter A. Lovell, F. Joseph Schork. Fundamentals of emulsion polymerization // Biomacromolecules. 2020. V. 21. № 11. P. 4396–4441. https://doi.org/10.1021/acs.biomac.0c00769
  11. Шевченко Н.Н., Панкова Г.А., Шабсельс Б.М., Лаишевкина С.Г., Байгильдин В.А. Безэмульгаторная эмульсионная сополимеризация метилметакрилата как метод получения катионных частиц для диагностики вируса клещевого энцефалита // Коллоид. журн. 2020. Т. 82. № 2. С. 252–260.
  12. Menshikova A.Yu., Evseeva T.G., Peretolchin M.V., Chekina N.A., Ivanchev S.S. Emulsifier-free polymerization of methyl methacrylate with a carboxyl-containing initiator // Polym. Sci. A. 2001. V .43. № 4. P. 607–615.
  13. Троицкий Б.Б., Локтева А.А., Беганцова Ю.Е., Новикова М.А., Конев А.Н., Федюшкин И.Л. Получение наночастиц полиметилметакрилата диаметром 15–50 нм из латексных частиц субмикрометрового размера // Журнал Прикладной Химии. 2019. Т. 92. № 7. С. 875–880. https://doi.org/10.1134/S0044461819070089
  14. Walling Ch. Free radicals in solution. New York. Wiley. 1957.
  15. Dolgoplosk B.A. Tinyakova E.I. Generation of free radicals and their reactions. Moscow. Nauka, 1982.
  16. Guin P.S., Das S., Mandal P.C., Electrochemical reduction of quinones in different media: A review // Int. J. Electrochem. 2011. V. 2011. № 2. P. 816202.
  17. Додонов В. А., Гришин Д.Ф. Особенности полимеризации некоторых виниловых мономеров на элементоорганических инициаторах в присутствии гидрохинона // Высокомолекулярные соединения. Серия Б. 1993. Т. 35. № 1. С. 47–49.
  18. Robert M. Fitch, Michael B. Prenosil, Karen J. Sprick. The mechanism of particle formation in polymer hydrosols. I. Kinetics of aqueous polymerization of methyl methacrylate // J. Polym. Sci. Part C: Polym. Symp. 1969. V. 27. № 1. P. 95–118. https://doi.org/10.1002/polc.5070270109
  19. Fitch R.M., Tsai C.H. Polymer colloids particle formation in nonmicellar systems // J. Polym. Sci. Part B: Polym. Lett. 1970. V. 8. № 10. P. 703–710. https://doi.org/10.1002/pol.1970.110081007
  20. Fitch R.M. Latex particle nucleation and growth, in ACS Symposium Series, American Chemical Society: Washington, D.C. 1981. P. 1–29. https://doi.org/10.1021/bk-1981-0165.ch001
  21. Багдасаров Х.С., Гиваргизов Е.И., Демьянец Л.Н., Кузнецов В.А., Лабочев А.Н., Чернов А.А. Современная кристаллография. Том 3. Образование кристаллов. Москва: Наука. 1980.
  22. Moravec G. Macromolecules in solutions. M.: Mir. 1967.
  23. Frolov Yu.G. Course of colloid chemistry (Surface phenomena and disperse systems). M: Chemistry. 1982.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».