ON THE CALCULATION OF ELECTROKINETIC POTENTIAL IN DETONATION NANODIAMOND DISPERSIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The applicability of various approximations of the theory of electrophoresis for calculating the electrokinetic potential in real nanodisperse systems was evaluated on the example of the polydispersed aqueous sol of thermooxidized detonation nanodiamond containing aggregates of nanoparticles, depending on the concentration and pH of background electrolyte solutions (NaCl). It was found that at low potentials ζW < 25 mV calculated for the primary particles in the framework of the Wiersema’s model, taking into account particle aggregation and aggregate porosity practically does not affect the electrokinetic potential. In the range 25–50 mV, the most reliable values of the electrokinetic potentials of aggregates seem to be obtained using the Miller’s equation for ion-conducting particles, taking into account their real porosities providing that the potential is constant. At > 50 mV, knowing the real size of the aggregates, assuming that they are monolithic, the Overbeek’s equation with Oshima’s analytical expressions of the functions f3(κr) and f4(κr) can be used to calculate the electrokinetic potentials.

About the authors

L. E. Ermakova

Saint Petersburg State University

Email: anna.volkova@spbu.ru
Universitetskaya emb., 7-9, Saint Petersburg, 199034 Russia

N. S. Chuikov

Saint Petersburg State University

Author for correspondence.
Email: anna.volkova@spbu.ru
Universitetskaya emb., 7-9, Saint Petersburg, 199034 Russia

A. V. Volkova

Saint Petersburg State University

Email: anna.volkova@spbu.ru
Universitetskaya emb., 7-9, Saint Petersburg, 199034 Russia

References

  1. Xu J., Chow E. Biomedical applications of nanodiamonds: From drug-delivery to diagnostics // SLAS Technology. 2023. V. 28. № 4. P. 214–222. https://doi.org/10.1016/j.slast.2023.03.007
  2. Wang X., Sang D., Zou L. et al. Multiple bioimaging applications based on the excellent properties of nanodiamond: A Review // Molecules. 2023. V. 28. P. 4063. https://doi.org/10.3390/molecules28104063
  3. Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond // Nanotechnology. 2017. V. 28. P. 252001–252027. https://doi.org/10.1088/1361-6528/aa6ae4
  4. Pan F., Khan M., Ragab A.H. et al. Recent advances in the structure and biomedical applications of nanodiamonds and their future perspectives // Materials & Design. 2023. V. 233. P. 112179. https://doi.org/10.1016/j.matdes.2023.112179
  5. Kryshtal A.P., Mchedlov-Petrossyan N.O, Laguta A.N. et al. Primary detonation nanodiamond particles: Their core-shell structure and the behavior in organo-hydrosols // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 614. P. 126079. https://doi.org/10.1016/j.colsurfa.2020.126079
  6. Mchedlov-Petrossyan N.O., Kriklya N.N., Kryshtal A.P. et al. The interaction of the colloidal species in hydrosols of nanodiamond with inorganic and organic electrolytes // Journal of Molecular Liquids. 2019. V. 283. P. 849–859. https://doi.org/10.1016/j.molliq.2019.03.095
  7. Mchedlov-Petrossyan N.O., Kriklya N.N., Laguta A.N., Osawa E. Stability of detonation nanodiamond colloid with respect to inorganic electrolytes and anionic surfactants and solvation of the particles surface in DMSO–H2O organo-hydrosols // Liquids. 2022. V. 2. P. 196–209. https://doi.org/10.3390/liquids2030013
  8. Kulvelis Yu.V., Shvidchenko A.V., Aleksenskii A.E. Stabilization of detonation nanodiamonds hydrosol in physiological media with poly(vinylpyrrolidone) // Diamond and Related Materials. 2018. V. 87. P. 78–89. https://doi.org/10.1016/j.diamond.2018.05.012
  9. Соболева О.А. Устойчивость гидрозолей детонационных наноалмазов в присутствии солей и поверхностно-активных веществ // Коллоидный журнал. 2018. Т. 80. № 3. С. 338–343. https://doi.org/10.7868/S0023291218030114
  10. Сычёв Д.Ю., Жуков А.Н., Голикова Е.В., Суходолов Н.Г. Влияние простых электролитов на коагуляцию гидрозолей монодисперсного отрицательно заряженного детонационного наноалмаза // Коллоидный журнал. 2017. Т. 79. № 6. С. 785–791. https://doi.org/10.7868/S0023291217060118
  11. Gareeva F., Petrova N., Shenderova O., Zhukov A. Electrokinetic properties of detonation nanodiamond aggregates in aqueous KCl solutions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014. V. 440. P. 202–207. https://doi.org/10.1016/j.colsurfa.2012.08.055
  12. Petrova N., Zhukov A., Gareeva F. et al. Interpretation of electrokinetic measurements of nanodiamond particles // Diamond & Related Materials. 2012. V. 30. P. 62–69. https://doi.org/10.1016/j.diamond.2012.10.004
  13. Жуков А.Н., Гареева Ф.Р., Алексенский А.Е. Комплексное исследование электроповерхностных свойств агломератов детонационного наноалмаза в водных растворах КСl // Коллоидный журнал. 2012. Т. 74. № 4. C. 483–491.
  14. Швидченко А.В., Дидейкин А.Т., Жуков А.Н. Конденсация противоионов в гидрозолях монокристаллических частиц детонационного наноалмаза, полученных отжигом агломератов в атмосфере воздуха // Коллоидный журнал. 2017. Т. 79. № 4. С. 521–524. https://doi.org/10.7868/S0023291217040140
  15. Патент RU2599665C2, 15.10.2013.
  16. Волкова А.В., Белобородов А.А., Водолажский В.А. и др. Влияние рН и концентрации индифферентного электролита на агрегативную устойчивость водного золя детонационного алмаза // Коллоидный журнал. 2024. Т. 86. № 2. С. 169–192. https://doi.org/10.31857/S0023291224020031
  17. Lyklema J. Fundamental of Interface and Colloid Science V. 2. Solid-Liquid Interfaces. London: Academic Press. 1995.
  18. Ohshima H. A simple expression for Henry’s function for the retardation effect in electrophoresis of spherical colloidal particles // Journal of Colloid and Interface Science. 1994. V. 168. P. 269–271. https://doi.org/10.1006/jcis.1994.1419
  19. Wiersema P.H., Loeb A.L., Overbeek J.Th.G. Calculation of the electrophoretic mobility of a spherical colloid particle // Journal of Colloid and Interface Science. 1966. V. 22. P. 78–99. https://doi.org/10.1016/0021-9797(66)90069-5
  20. Overbeek J.T.G. Theorie der Elektrophorese // Fortschrittsberichte über Kolloide und Polymere. Kolloid-Beihefte. 1943. V. 54. № 7–9. P. 287– 364. https://doi.org/10.1007/bf02556774
  21. Ohshima H. Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle // Journal of Colloid and Interface Science. 2001. V. 239. P. 587–590. https://doi.org/10.1006/jcis.2001.7608
  22. Levine S., Neale G.H. The prediction of electrokinetic phenomena within multiparticle systems. I. Electrophoresis and electroosmosis // Journal of Colloid and Interface Science. 1974. V. 47. № 2. P. 520–529. https://doi.org/10.1016/0021-9797(74)90284-7
  23. Miller N.P., Berg J.C., O’Brien R.W. The electrophoretic mobility of a porous aggregate // Journal of Colloid and Interface Science. 1992. V. 153. № 1. P. 237–243. https://doi.org/10.1016/0021-9797(92)90315-D
  24. Neale G.H., Nader W.K. Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles // AIChE Journal. 1973. V. 19. P. 112–119. https://doi.org/10.1002/aic.690190116

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».