Effect of stabilizer concentration on parameters of poly(D,L-lactide-co-glycolide) nanoparticles produced by nanoprecipitation
- Authors: Kuznetsova E.V.1, Tyurnina A.E.1, Konshina E.A.1,2, Atamanova A.A.3, Kalinin K.T.1,3, Aleshin S.V.1, Shuvatova V.G.1, Posypanova G.A.1, Chvalun S.N.1,3
-
Affiliations:
- Национальный исследовательский центр «Курчатовский институт»
- Московский физико-технический институт (национальный исследовательский университет)
- Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН
- Issue: Vol 86, No 6 (2024)
- Pages: 776-788
- Section: Articles
- Submitted: 20.02.2025
- Accepted: 20.02.2025
- Published: 15.12.2024
- URL: https://journals.rcsi.science/0023-2912/article/view/280801
- DOI: https://doi.org/10.31857/S00232912240600102
- EDN: https://elibrary.ru/VLBKYB
- ID: 280801
Cite item
Abstract
Effect of the poly(vinyl alcohol) (PVA) concentration on the parameters of nanoparticles based on biodegradable poly(D,L-lactide-co-glycolide) (PLGA) copolymers prepared by nanoprecipitation was studied. It was observed that the value of hydrodynamic diameter of the PLGA particles remained unchanged and was about ~ 130–140 nm with varying of the PVA concentration from 2.5 to 15 mg/mL (the organic phase concentration was 5 mg/mL). Both the polydispersity index and electrokinetic potential (absolute values) have tend to decrease with an increase in the PVA concentration. It was found that loading content of hydrophobic model drug docetaxel in the PLGA particles as well as its in vitro cytotoxic activity against mice colorectal carcinoma CT26 and human lung fibroblast WI-38 cell lines are slightly affected be the PVA concentration. However, the PLGA particles produced with high PVA concentration are easily re-dispersed to initial size after their lyophilization both with and without cryo-protectant.
Full Text

About the authors
E. V. Kuznetsova
Национальный исследовательский центр «Курчатовский институт»
Author for correspondence.
Email: kuznetsova.kate992@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123128
A. E. Tyurnina
Национальный исследовательский центр «Курчатовский институт»
Email: kuznetsova.kate992@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123128
E. A. Konshina
Национальный исследовательский центр «Курчатовский институт»; Московский физико-технический институт (национальный исследовательский университет)
Email: kuznetsova.kate992@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123128; Институтский пер., 9, Долгопрудный, 141701
A. A. Atamanova
Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН
Email: kuznetsova.kate992@gmail.com
Russian Federation, ул. Профсоюзная, 70, 117393
K. T. Kalinin
Национальный исследовательский центр «Курчатовский институт»; Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН
Email: kuznetsova.kate992@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123128; ул. Профсоюзная, 70, 117393
S. V. Aleshin
Национальный исследовательский центр «Курчатовский институт»
Email: kuznetsova.kate992@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123128
V. G. Shuvatova
Национальный исследовательский центр «Курчатовский институт»
Email: kuznetsova.kate992@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123128
G. A. Posypanova
Национальный исследовательский центр «Курчатовский институт»
Email: kuznetsova.kate992@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123128
S. N. Chvalun
Национальный исследовательский центр «Курчатовский институт»; Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН
Email: kuznetsova.kate992@gmail.com
Russian Federation, пл. Академика Курчатова, 1, Москва, 123128; ул. Профсоюзная, 70, 117393
References
- Li W., Huberman-Shlaesand J., Tian B. Perspectives on multiscale colloid-based materials for biomedical applications // Langmuir. 2023. V. 39. № 39. P. 13759–13769. https://doi.org/10.1021/acs.langmuir.3c01274
- Efimova A.A., Sybachin A.V. Stimuli-responsive drug delivery systems based on bilayer lipid vesicles: new trends // Colloid Journal. 2023. V. 85. P. 687–702. https://doi.org/10.1134/S1061933X23600690
- Mishchenko E.V., Gileva A.M., Markvicheva E.A., Koroleva M.Yu. Nanoemulsions and solid lipid nanoparticles with encapsulated doxorubicin and thymoquinone // Colloid Journal. 2023. V. 85. P. 736–745. https://doi.org/10.1134/S1061933X23600707
- Fomina Yu.S., Semkina A.S., Zagoskin Yu.D. et al. Biocompatible hydrogels based on biodegradable polyesters and their copolymers // Colloid Journal. 2023. V. 85. P. 795–816. https://doi.org/10.1134/S1061933X23600756
- Sedush N.G., Kadina Y.A., Razuvaeva E.V. et al. Nanoformulations of drugs based on biodegradable lactide copolymers with various molecular structures and architectures // Nanotechnol. Russ. 2021. V. 16. P. 421–438.https://doi.org/10.1134/S2635167621040121
- Merkulova M.A., Osipova N.S., Kalistratova A.V. et al. Etoposide-loaded colloidal delivery systems based on biodegradable polymeric carriers // Colloid Journal. 2023. V. 85. P. 712–735. https://doi.org/10.1134/S1061933X23600744
- da Silva Feltrin F., D´Angelo N.A., de Oliveira Guarnieri J.P. et al. Selection and control of process conditions enable the preparation of curcumin-loaded poly(lactic-co-glycolic acid) nanoparticles of superior performance // ACS Appl. Mater. Interfaces. 2023. V. 15. № 22. P. 26496–26509. https://doi.org/10.1021/acsami.3c05560
- Gahtani R.M., Alqahtani A., Alqahtani T. et al. 5-Fluorouracil-loaded PLGA nanoparticles: formulation, physicochemical characterisation, and in vitro anti-cancer activity // Bioinorg. Chem. Appl. 2023. V. 2023. P. 1. https://doi.org/10.1155/2023/2334675
- Razuvaeva E.V., Kalinin K.T., Sedush N.G. et al. Structure and cytotoxicity of biodegradable poly(d,l-lactide-co-glycolide) nanoparticles loaded with oxaliplatin // Mendeleev Commun. 2021. V. 31. № 4. P. 512–514. https://doi.org/10.1016/j.mencom.2021.07.025
- Li M., Tang H., Xiong Y. et al. Pluronic F127 coating performance on PLGA nanoparticles: enhanced flocculation and instability // Colloids Surf. B. 2023. V. 226. P. 113328. https://doi.org/10.1016/j.colsurfb.2023.113328
- Galindo-Camacho R.M., Haro I., Gómara M.J. et al. Cell penetrating peptides-functionalized licochalcone-A-loaded PLGA nanoparticles for ocular inflammatory diseases: evaluation of in vitro anti-proliferative effects, stabilization by freeze-drying and characterization of an in-situ forming gel // Int. J. Pharm. 2023. V. 639. P. 122982. https://doi.org/10.1016/j.ijpharm.2023.122982
- Hernández-Giottonini K.Y., Rodríguez-Córdova R.J., Gutiérrez-Valenzuela C.A. et al. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters // RSC Adv. 2020. V. 10. № 8 P. 4218–4231. https://doi.org/10.1039/C9RA10857B
- Azman K.A.K., Seong F.C., Singh G.K.S., Affandi M.M.R.M.M. Physicochemical characterization of astaxanthin-loaded PLGA formulation via nanoprecipitation technique // J. Appl. Pharm. Sci. 2021. V. 11. № 6. P. 056–061. https://doi.org/10.7324/JAPS.2021.110606
- Razuvaeva E.V., Sedush N.G., Shirokova E.M. et al. Effect of preparation conditions on the size of nanoparticles based on poly(D,L-lactide-co-glycolide) synthesized with bismuth subsalicylate // Colloids Surf. A Physicochem. Eng. Asp. 2022. V. 648. P. 129198. https://doi.org/10.1016/j.colsurfa.2022.129198
- Eslayed S.I., Girgis G.N.S., El-Dahan M.S. Formulation and evaluation of Pravastatin sodium-loaded PLGA nanoparticles: in vitro–in vivo studies assessment // Int. J. Nanomedicine. 2023. V. 18. P. 721–742. https://doi.org/10.2147/IJN.S394701
- Fabozzi A., Barretta M., Valente T., Borzacchiello A. Preparation and optimization of hyaluronic acid decorated irinotecan-loaded poly(lactic-co-glycolic acid) nanoparticles by microfluidics for cancer therapy applications // Colloids Surf. A Physicochem. Eng. Asp. 2023. V. 674. P. 131790. https://doi.org/10.1016/j.colsurfa.2023.131790
- Varga N., Bélteki R., Juhász Á., Csapó E. Core-shell structured PLGA particles having highly controllable ketoprofen drug release // Pharmaceutics. 2023. V. 15. № 5. P. 1355. https://doi.org/10.3390/pharmaceutics15051355
- Galindo R., Sánchez-López E., Gómara M.J. et al. Development of peptide targeted PLGA-PEGylated nanoparticles loading licochalcone-A for ocular inflammation // Pharmaceutics. 2022. V. 14. № 2. P. 285. https://doi.org/10.3390/pharmaceutics14020285
- Badri W., Miladi K., Nazari Q.A. et al. Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement // Colloids Surf. A Physicochem. Eng. Asp. 2017. V. 516. P. 238–244. https://doi.org/10.1016/j.colsurfa.2016.12.029
- Sanchez-López E., Egea M.A., Cano A. et al. PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen – in vitro, ex vivo and in vivo characterization // Colloids Surf. B. 2016. V. 145. P. 241–250. https://doi.org/10.1016/j.colsurfb.2016.04.054
- Shah U., Joshi G., Sawant K. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized byfactorial design // Mater. Sci. Eng. C. 2014. V. 35. P. 153–163. https://doi.org/10.1016/j.msec.2013.10.038
- Kricheldorf H.R., Behnken G. Copolymerizations of glycolide and L‐lactide initiated with bismuth(III)n‐hexanoate or bismuth subsalicylate // J. Macromol. Sci. A. 2007. V. 44. № 8. P. 795–800. https://doi.org/10.1080/10601320701406997
- Mossman T. Rapid colorimetric assay for cellular growth and cytotoxicity assays // J. Immunol. Methods. 1983. V. 65. P. 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
- Kiss É., Gyulai G., Pénzes Cs.B., Idei M. et al. Tunable surface modification of PLGA nanoparticles carrying new antitubercular drug candidate // Colloids Surf. A Physicochem. Eng. Asp. 2014. V. 458. P. 178–186. https://doi.org/10.1016/j.colsurfa.2014.05.048
- Albert C., Huang N., Tsapis N., Geiger S. et al. Bare and sterically stabilized PLGA nanoparticles for the stabilization of pickering emulsions // Langmuir. 2018. V. 34. № 46. P. 13935–13945. https://doi.org/10.1021/acs.langmuir.8b02558
- Fonseca С., Simões S., Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity // J. Control. Release. 2002. V. 83. № 2. P. 273–286. https://doi.org/10.1016/S0168-3659(02)00212-2
- Beck-Broichsitter M., Rytting E., Lebhardt T. et al. Preparation of nanoparticles by solvent displacement for drug delivery: A shift in the “ouzo region” upon drug loading // Eur. J. Pharm. Sci. 2010. V. 41. № 2. P. 244–253. https://doi.org/10.1016/j.ejps.2010.06.007
- Sahoo K., Panyam J., Prabha S., Labhasetwar V. Residual polyvinyl alcohol associated with poly(D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake // J. Control. Release. 2002. V. 82. P. 105–114. https://doi.org/10.1016/s0168-3659(02)00127-x
- Aubry J., Ganachaud F., Addad J.-P.C., Cabane B. Nanoprecipitation of polymethylmethacrylate by solvent shifting // Langmuir. 2009. V. 25. P. 1970–1979. https://doi.org/10.1021/la803000e
- Lepeltier E., Bourgaux C., Couvreur P. Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices // Adv. Drug Deliv. Rev. 2014. V. 71. P. 86–97.https://doi.org/10.1016/j.addr.2013.12.009
- Cooper D.L., Harirforoosh S. Design and optimization of PLGA-based diclofenac loaded nanoparticles // PLOS One. 2014. V. 9. № 1. P. e87326. https://doi.org/10.1371/journal.pone.0087326
- Menon J.U., Kona S., Wadajkar A.S., Desai F. et al. Effects of surfactants on the properties of PLGA nanoparticles. // J. Biomed. Mater. Res. Part A. 2012. V. 100A. P. 1998–2005. https://doi.org/10.1002/jbm.a.34040
Supplementary files
