Dynamic Surface Properties of Styrene and Hydrophobized 4-Vinylbenzyl Chloride Copolymers at the Air-Water Interface
- Authors: Khrebina A.D.1, Vlasov P.S.1, Zorin I.M.1, Lezov A.A.1, Rafikova A.R.1, Chelushkin P.S.1, Noskov B.A.1
-
Affiliations:
- Санкт-Петербургский государственный университет
- Issue: Vol 86, No 5 (2024)
- Pages: 667-676
- Section: Articles
- Submitted: 30.11.2024
- Accepted: 30.11.2024
- Published: 30.11.2024
- URL: https://journals.rcsi.science/0023-2912/article/view/271790
- DOI: https://doi.org/10.31857/S0023291224050127
- EDN: https://elibrary.ru/WGMACL
- ID: 271790
Cite item
Abstract
The kinetic dependences of surface tension, dilatational dynamic surface elasticity and ellipsometric angles of solutions of copolymers of styrene and 4-vinylbenzyl chloride modified with N,N-dimethyldodecylamine, as well as the micromophology of adsorption and spread layers of this polyelectrolyte were determined. All kinetic dependences of the dynamic surface elasticity were found to be monotonic, in contrast to the results for previously studied polyelectrolyte solutions without polystyrene fragments. The peculiarities of surface properties of the studied solutions may be related to the formation of microaggregates in the surface layer, preventing the formation of loops and tails of polymer chains at the interfacial boundary, and, consequently, the decrease in surface elasticity after the local maximum. The occurrence of aggregates with sizes of 1–4 nm in the Z-direction in the surface layer is also indicated by atomic force microscopy data. The obtained results confirm the earlier conclusions about the formation of aggregates in the surface layer of polyelectrolyte solutions containing sodium polystyrene sulfonate (PSS) fragments. A two-dimensional phase transition to a denser surface phase at surface pressures of 25–30 mN/m and the formation of aggregates with a size of 40 nm in the Z-direction were found for applied polyelectrolyte layers without styrene monomers on an aqueous substrate.
Full Text

About the authors
A. D. Khrebina
Санкт-Петербургский государственный университет
Author for correspondence.
Email: st076362@student.spbu.ru
Russian Federation, Санкт-Петербург
P. S. Vlasov
Санкт-Петербургский государственный университет
Email: st076362@student.spbu.ru
Russian Federation, Санкт-Петербург
I. M. Zorin
Санкт-Петербургский государственный университет
Email: st076362@student.spbu.ru
Russian Federation, Санкт-Петербург
A. A. Lezov
Санкт-Петербургский государственный университет
Email: st076362@student.spbu.ru
Russian Federation, Санкт-Петербург
A. R. Rafikova
Санкт-Петербургский государственный университет
Email: st076362@student.spbu.ru
Russian Federation, Санкт-Петербург
P. S. Chelushkin
Санкт-Петербургский государственный университет
Email: st076362@student.spbu.ru
Russian Federation, Санкт-Петербург
B. A. Noskov
Санкт-Петербургский государственный университет
Email: st076362@student.spbu.ru
Russian Federation, Санкт-Петербург
References
- Ishimuro Y., Ueberreiter K. The surface tension of poly(acrylic acid) in aqueous solution // Colloid Polym Sci. 1980. Vol. 258, № 8. P. 928–931. https://doi.org/10.1007/BF01584922
- Yim H., Kent M., Matheson A., Ivkov R., Satija S., Majewski J., Smith G.S. Adsorption of poly(styrenesulfonate) to the air surface of water by neutron reflectivity // Macromolecules. 2000. Vol. 33, № 16. P. 6126–6133. https://doi.org/10.1021/ma000266q
- Yim H., Kent M.S., Matheson A., Stevens M.J., Ivkov R., Satija S., Majewski J., Smith G.S. Adsorption of sodium poly(styrenesulfonate) to the air surface of water by neutron and x-ray reflectivity and surface tension measurements: polymer concentration dependence // Macromolecules. 2002. Vol. 35, № 26. P. 9737–9747. https://doi.org/10.1021/ma0200468
- Owiwe M.T., Ayyad A.H., Takrori F.M. Surface tension of the oppositely charged sodium poly(styrene sulfonate)/benzyldimethylhexadecylammonium chloride and sodium poly(styrene sulfonate)/polyallylamine hydrochloride mixtures // Colloid Polym Sci. 2020. Vol. 298, № 9. P. 1197–1204. https://doi.org/10.1007/s00396-020-04692-7
- Dickhaus B.N., Priefer R. Determination of polyelectrolyte pKa values using surface-to-air tension measurements // Colloids Surf A: Physicochem Eng Asp. 2016. Vol. 488. P. 15–19. https://doi.org/10.1016/j.colsurfa.2015.10.015
- Okubo T., Kobayashi K. Surface tension of biological polyelectrolyte solutions // J Colloid Interface Sci. 1998. Vol. 205, № 2. P. 433–442. https://doi.org/10.1006/jcis.1998.5632
- Ríos H.E., González-Navarrete J., Vargas V., Urzúa M.D. Surface properties of cationic polyelectrolytes hydrophobically modified // Colloids Surf A: Physicochem Eng Asp. 2011. Vol. 384, № 1–3. P. 262–267. https://doi.org/10.1016/j.colsurfa.2011.03.063
- Millet F., Nedyalkov M., Renard B., Perrin P., Lafuma F., Benattar J.-J. Adsorption of hydrophobically modified poly(acrylic acid) sodium salt at the air/water interface by combined surface tension and x-ray reflectivity measurements // Langmuir. 1999. Vol. 15, № 6. P. 2112–2119. https://doi.org/10.1021/la981481r
- Théodoly O., Ober R., Williams C.E. Adsorption of hydrophobic polyelectrolytes at the air/water interface: Conformational effect and history dependence // The European Physical Journal E. 2001. Vol. 5, № 1. P. 51–58. https://doi.org/10.1007/s101890170086
- Noskov B.A., Bilibin A.Y., Lezov A. V., Loglio G., Filippov S.K., Zorin I.M., Miller R. Dynamic surface elasticity of polyelectrolyte solutions // Colloids Surf A: Physicochem Eng Asp. 2007. Vol. 298, № 1–2. P. 115–122. https://doi.org/10.1016/j.colsurfa.2006.12.003
- Noskov B.A., Nuzhnov S.N., Loglio G., Miller R. Dynamic surface properties of sodium poly(styrenesulfonate) solutions // Macromolecules. 2004. Vol. 37, № 7. P. 2519–2526. https://doi.org/10.1021/ma030319e
- Laschewsky A. Molecular concepts, self-organisation and properties of polysoaps // Polysoaps/Stabilizers/Nitrogen-15 NMR. Berlin/Heidelberg: Springer-Verlag, 1995. P. 1–86. https://doi.org/10.1007/BFb0025228
- Summers M., Eastoe J., Davis S., Du Z., Richardson R.M., Heenan R.K., Steytler D., Grillo I. Polymerization of cationic surfactant phases // Langmuir. 2001. Vol. 17, № 17. P. 5388–5397. https://doi.org/10.1021/la010541h
- Summers M., Eastoe J., Richardson R.M. Concentrated polymerized cationic surfactant phases // Langmuir. 2003. Vol. 19, № 16. P. 6357–6362. https://doi.org/10.1021/la034184h
- Moussa W., Colombani O., Benyahia L., Nicolai T., Chassenieux C. Structure of a self-assembled network made of polymeric worm-like micelles // Polymer Bulletin. 2016. Vol. 73, № 10. P. 2689–2705. https://doi.org/10.1007/s00289-016-1615-5
- Moussa W. Self-assembly of comb-like amphiphilic copolymers in aqueous solution // Polymer Bulletin. 2017. Vol. 74, № 4. P. 1405–1419. https://doi.org/10.1007/s00289-017-1910-9
- Talantikite M., Aoudia K., Benyahia L., Chaal L., Chassenieux C., Deslouis C., Gaillard C., Saidani B. Structural, viscoelastic, and electrochemical characteristics of self-assembled amphiphilic comblike copolymers in aqueous solutions // J Phys Chem B. 2017. Vol. 121, № 4. P. 867–875. https://doi.org/10.1021/acs.jpcb.6b11237
- Dutertre F., Gaillard C., Chassenieux C., Nicolai T. Branched wormlike micelles formed by self-assembled comblike amphiphilic copolyelectrolytes // Macromolecules. 2015. Vol. 48, № 20. P. 7604–7612. https://doi.org/10.1021/acs.macromol.5b01503
- Dutertre F., Benyahia L., Chassenieux C., Nicolai T. Dynamic mechanical properties of networks of wormlike micelles formed by self-assembled comblike amphiphilic copolyelectrolytes // Macromolecules. 2016. Vol. 49, № 18. P. 7045–7053. https://doi.org/10.1021/acs.macromol.6b01369
- Merland T., Drou C., Legoupy S., Benyahia L., Schmutz M., Nicolai T., Chassenieux C. Self-Assembly in water of C60 fullerene into isotropic nanoparticles or nanoplatelets mediated by a cationic amphiphilic polymer // J Colloid Interface Sci. 2022. Vol. 624. P. 537–545. https://doi.org/10.1016/j.jcis.2022.05.113
- Wu A., Gao X., Liang L., Sun N., Zheng L. Interaction among worm-like micelles in polyoxometalate-based supramolecular hydrogel // Langmuir. 2019. Vol. 35, № 18. P. 6137–6144. https://doi.org/10.1021/acs.langmuir.9b00627
- Zhang X., Shen Y., Shen G., Zhang C. Simple and effective approach to prepare an epoxy-functionalized polymer and its application for an electrochemical immunosensor // ACS Omega. 2021. Vol. 6, № 5. P. 3637–3643. https://doi.org/10.1021/acsomega.0c05183
- Limouzin-Morel C., Dutertre F., Moussa W., Gaillard C., Iliopoulos I., Bendejacq D., Nicolai T., Chassenieux C. One and two dimensional self-assembly of comb-like amphiphilic copolyelectrolytes in aqueous solution // Soft Matter. 2013. Vol. 9, № 37. P. 8931. https://doi.org/10.1039/C3SM51895G
- Noskov B.A., Akentiev A. V., Bilibin A.Y., Zorin I.M., Miller R. Dilational surface viscoelasticity of polymer solutions // Adv Colloid Interface Sci. 2003. Vol. 104, № 1–3. P. 245–271. https://doi.org/10.1016/S0001-8686(03)00045-9
- Langmuir I., Schaefer V.J. Activities of urease and pepsin monolayers // J Am Chem Soc. 1938. Vol. 60, № 6. P. 1351–1360. https://doi.org/10.1021/ja01273a023
- Novikova A.A., Vlasov P.S., Lin S.Y., Sedláková Z., Noskov B.A. Dynamic surface properties of poly(methylalkyldiallylammonium chloride) solutions // J Taiwan Inst Chem Eng. 2017. Vol. 80. P. 122–127. https://doi.org/10.1016/j.jtice.2017.08.042
- Manning-Benson S., Bain C.D., Darton R.C. Measurement of dynamic interfacial properties in an overflowing cylinder by ellipsometry // J Colloid Interface Sci. 1997. Vol. 189, № 1. P. 109–116.
- Tummino A., Toscano J., Sebastiani F., Noskov B.A., Varga I., Campbell R.A. Effects of aggregate charge and subphase ionic strength on the properties of spread polyelectrolyte/surfactant films at the air/water interface under static and dynamic conditions // Langmuir. 2018. Vol. 34, № 6. P. 2312–2323. https://doi.org/10.1021/acs.langmuir.7b03960
Supplementary files
