Formation of Hybrid Membranes for Water Desalination by the Method of Membrane Distillation
- Authors: Vinogradov I.I.1, Drozhzhin N.A.1, Kravets L.I.1, Rossouw A.1, Vershinina T.N.1, Nechaev A.N.1,2
-
Affiliations:
- Объединенный институт ядерных исследований
- Государственный университет “Дубна”
- Issue: Vol 86, No 5 (2024)
- Pages: 533-548
- Section: Articles
- Submitted: 29.11.2024
- Accepted: 29.11.2024
- Published: 30.11.2024
- URL: https://journals.rcsi.science/0023-2912/article/view/271743
- DOI: https://doi.org/10.31857/S0023291224050029
- EDN: https://elibrary.ru/ABCVIX
- ID: 271743
Cite item
Abstract
A method has been developed for the formation of hybrid membranes consisting of a hydrophilic microporous substrate and a hydrophobic nanofiber polymer layer deposited by electroforming. A track-etched membrane made of polyethylene terephthalate was used as a hydrophilic microporous substrate, on the surface of which a thin layer of titanium was applied by magnetron sputtering to ensure adhesion of the nanofiber layer. Simultaneously, the titanium coating was used to make a conductive track-etched membrane that served as a collector electrode. It is been shown that the application of this method for the formation of polymer coatings when used as a starting material for the formation of polyvinylidene fluoride nanofibers makes it possible to obtain a layer with highly hydrophobic properties, the water contact angle of the surface of which, depending on the deposition density, averages 143.3 ± 1.3°. A study of the morphology of the nanofiber coating shows that it has a microstructure typical of non-woven materials. The nanofibers forming the porous system of this layer have a wide range in size. The study of the molecular structure of the nanofiber layer by IR-Fourier spectroscopy and X-ray diffraction analysis showed that its structure is dominated by the β-phase, which is characterized by a maximum dipole moment. It is been shown that the hybrid membranes of the developed sample provide high separation selectivity when desalting an aqueous solution of sodium chloride with a concentration of 26.5 g/l by membrane distillation. The salt rejection coefficient for membranes with a nanofiber layer density from 20.7 ± 0.2 to 27.6 ± 0.2 g/m2 in the studied mode of the membrane distillation process is 99.97−99.98%. It has been established that the use of a highly hydrophobic nanofiber layer with a developed pore structure in combination with a hydrophilic microporous base makes it possible to increase the productivity of the membrane distillation process. The value of the maximum condensate flow through the membranes is on average 7.0 kg m2/h and its depends on the density of the deposited nanofiber layer.
Full Text

About the authors
I. I. Vinogradov
Объединенный институт ядерных исследований
Email: kravets@jinr.ru
Russian Federation, Дубна
N. A. Drozhzhin
Объединенный институт ядерных исследований
Email: kravets@jinr.ru
Russian Federation, Дубна
L. I. Kravets
Объединенный институт ядерных исследований
Author for correspondence.
Email: kravets@jinr.ru
Russian Federation, Дубна
A. Rossouw
Объединенный институт ядерных исследований
Email: kravets@jinr.ru
Russian Federation, Дубна
T. N. Vershinina
Объединенный институт ядерных исследований
Email: kravets@jinr.ru
Russian Federation, Дубна
A. N. Nechaev
Объединенный институт ядерных исследований; Государственный университет “Дубна”
Email: kravets@jinr.ru
Russian Federation, Дубна; Дубна
References
- Curto D., Franzitta V., Guercio A. A review of the water desalination technologies // Appl. Sci. 2021. V. 11. P. 670. https://doi.org/10.3390/app11020670
- Брык М.Т., Нигматуллин Р.Р. Мембранная дистилляция // Успехи химии. 1994. Т. 63. № 12. С. 1114–1129.
- Drioli E., Ali A., Macedonio F. Membrane distillation: Recent developments and perspectives // Desalination. 2015. V. 356. P. 56–84. http://dx.doi.org/10.1016/j.desal.2014.10.028
- Essalhi M., Khayet M. Surface segregation of fluorinated modifying macromolecule for hydrophobic/hydrophilic membrane preparation and application in air gap and direct contact membrane distillation // J. Membr. Sci. 2012. V. 417–418. P. 163–173. https://doi.org/10.1016/j.memsci.2012.06.028
- Khalifa A., Lawal D., Antar M., Khayet M. Experimental and theoretical investigation on water desalination using air gap membrane distillation // Desalination. 2015. V. 376. P. 94–108. http://dx.doi.org/10.1016/j.desal.2015.08.016
- Woo Yu.Ch., Tijing L.D., Park M.J., Yao M., Choi J.-S., Lee S., Kim S.-H., An K.-J., Shon H.K. Electrospun dual-layer nonwoven membrane for desalination by air gap membrane distillation // Desalination. 2017. V. 404. P. 187–198. http://dx.doi.org/10.1016/j.desal.2015.09.009
- Ulbricht M. Advanced functional polymer membranes // Polymer. 2006. V. 47. P. 2217–2262. https://doi.org/10.1016/j.polymer.2006.01.084
- Blasco E., Sims M.B., Goldmann A.S., Sumerlin B.S., Barner-Kowollik C. 50th Anniversary perspective: polymer functionalization // Macromolecules. 2017. V. 50. P. 5215–5252. https://doi.org/10.1021/acs.macromol.7b00465
- Makvandi P., Iftekhar S., Pizzetti F., Zarepour A., Zare E.N., Ashrafzadeh M., Agarwa T., Padil V.V.T., Mohammadinejad R., Sillanpaa M., Maiti T.K., Perale G., Zarrabi A., Rossi F. Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: A review // Envir. Chem. Let. 2021. V. 19. P. 583–611. https://doi.org/10.1007/s10311-020-01089-4
- Abegunde O.O., Akinlabi E.T., Oladijo O.Ph., Akinlabi S., Ude A.U. Overview of thin film deposition techniques // AIMS Materials Science. 2019. V. 6. P. 174–199. https://doi.org/10.3934/matersci.2019.2.174
- Liu F., Wang L., Li D., Liu Q., Deng B. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification // RCS Adv. 2019. V. 9. P. 35417–35428. https://doi.org/10.1039/c9ra07114h
- Anis Sh. F., Hashaikeh R., Hilal N. Functional materials in desalination: A review // Desalination. 2019. V. 468. P. 114077. https://doi.org/10.1016/j.desal.2019.114077
- Assad M. El Haj, Bani-Hanib E., Al-Sawafta I., Issa S., Hmida A., Gupta M., Atiqure R.S.M., Hidouri K. Applications of nanotechnology in membrane distillation: A review study // Desalination and Water Treatment. 2020. V. 192. P. 61–77. https://doi.org/10.5004/dwt.2020.25821
- Farahbakhsh J., Vatanpour V., Khoshnam M., Zargar M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review // Reactive and Functional Polymers. 2021. V. 166. P. 105015. https://doi.org/10.1016/j.reactfunctpolym.2021.105015
- Кравец Л.И., Алтынов В.А., Ярмоленко М.А., Гайнутдинов Р.В., Satulu V., Mitu B., Dinescu G. Осаждение на поверхности трековых мембран гидрофобных полимерных покрытий из активной газовой фазы // Мембраны и мембранные технологии. 2022. Т. 12. № 2. С. 151–162. https://doi.org/10.1134/S2218117222020079
- Fan W., Qian J., Bai F., Li Y., Wang C., Zhao Q.-Z. A facile method to fabricate superamphiphobic polytetrafluoroethylene surface by femtosecond laser pulses // Chem. Phys. Lett. 2016. V. 644. P. 261–266. https://doi.org/10.1016/j.cplett.2015.12.010
- Yong J., Chen F., Yang Q., Jiang Z., Hou X. A review of femtosecond-laser-induced underwater superoleophobic surfaces // Adv. Mater. Interfaces. 2018. V. 5. P. 1701370. https://doi.org/10.1002/admi.201701370
- Satulu V., Mitu B., Pandele A.M., Voicu S.I., Kravets L., Dinescu G. Composite polyethylene terephthalate track membranes with thin teflon-like layers: preparation and surface properties // Appl. Surf. Sci. 2019. V. 476. P. 452–459. https://doi.org/10.1016/j.apsusc.2019.01.109
- Ju Y., Ai L., Qi X., Li J., Song W. Review on hydrophobic thin films prepared using magnetron sputtering deposition // Materials. 2023. V. 16. P. 3764. https://doi.org/10.3390/ma16103764
- Michels A.F., Soave P.A., Nardi J., Jardim P.L.G., Teixeira S.R., Weibel D.E., Horowitz F. Adjustable, (super)hydrophobicity by e-beam deposition of nanostructured PTFE on textured silicon surfaces // J. Mater. Sci. 2016. V. 51. P. 1316–1323. https://doi.org/10.1007/s10853-015-9449-3
- Grytsenko K., Ksianzou V., Kolomzarov Y., Lytvyn P., Birgit Dietzel B., Schrader S. Fluoropolymer film formation by electron activated vacuum deposition // Surfaces. 2021. V. 4. P. 66–80. https://doi.org/10.3390/surfaces4010009
- Кравец Л.И., Ярмоленко М.А., Рогачев А.А., Гайнутдинов Р.В., Гильман А.Б., Алтынов В.А., Лизунов Н.Е. Формирование на поверхности трековых мембран супергидрофобных покрытий методом электронно-лучевого диспергирования полимеров в вакууме // Перспективные материалы. 2019. № 11. С. 59–74. https://doi.org/10.30791/1028-978X-2019-11-59-74
- Кравец Л.И., Ярмоленко М.А., Рогачев А.В., Гайнутдинов Р.В., Алтынов В.А., Лизунов Н.Е. Формирование на поверхности трековых мембран гидрофобных и супергидрофобных покрытий с целью создания композиционных мембран для опреснения воды // Коллоидный журнал. 2022. Т. 84. № 4. С. 433–452. https://doi.org/ 10.31857/S0023291222040085
- Khayet M., Garcia-Payo M.C., Garcia-Fernandez L., Contreras-Martinez J. Dual-layered electrospun nanofibrous membranes for membrane distillation // Desalination. 2018. V. 426. P. 174–184. http://dx.doi.org/10.1016/j.desal.2017.10.036
- Huang Y., Huang Q.-L., Liu H., Zhang Ch.-X., You Y.-W., Li N.-N., Xiao Ch.-F. Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes // J. Memb. Sci. V. 523. P. 317–326. http://dx.doi.org/10.1016/j.memsci.2016.10.019
- Tijing L.D., Choi J.S., Lee S., Kim S.H., Shon H.K. Recent progress of membrane distillation using electrospun nanofibrous membrane // J. Membr. Sci. 2014. V. 453. P. 435–462. https://doi.org/10.1016/j.memsci.2013.11.022
- Subrahmanya T.M., Arshad A.B., Lin P.T., Widakdo J., Makari H.K., Austria H.F.M., Hu Ch.-Ch., Lai J.Y., Hung W.-S. A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues // RSC Adv. 2021. V. 11. P. 9638–9663. https://doi.org/10.1039/d1ra00060h
- Nayl A.A., Abd-Elhamid A.I., Awwad N.S., Abdelgawad M.A., Wu J., Mo X., Gomha S.M., Aly A.A., Brase S. Review of the recent advances in electrospun nanofibers applications in water purification // Polymers. 2022. V. 14. P. 1594. https://doi.org/10.3390/polym14081594
- Khatri M., Francis L., Hilal N. Modified electrospun membranes using different nanomaterials for membrane distillation // Membranes. 2023. V. 13. P. 338. https://doi.org/10.3390/membranes13030338
- Филатов Ю.Н. Электроформование волокнистых материалов (ЭФВ-Процесс). Москва. 2001, 297 с.
- Колобков А.С. Электроформование синтетических волокон и их применение (обзор) // Наноиндустрия. 2022. Т.15. № 2. С. 118–127. https://doi.org/10.22184/1993-8578.2022.15.2.118.127
- Виноградов И.И., Петрик Л., Серпионов Г.В., Нечаев А.Н. Композитная мембрана на основе трековой мембраны и нанокаркаса хитозана // Мембраны и мембранные технологии. 2021. Т. 11. № 6. С. 447–459. https://doi.org/10.1134/S2218117221060092
- Виноградов И.И., Андреев Е.В., Н. Юшин Н.С., Сохацкий А.С., Алтынов В.А., Густова М.В., Вершинина Т.Н., Зиньковская И., Нечаев А.Н., Апель П.Ю. Гибридная мембрана для одновременной селективной сорбции цезия в ионной и коллоидной форме // Теоретические основы химической технологии. 2023. Т. 57. № 4. С. 479–492. https://doi.org/10.31857/S0040357123040176
- Pereao O., Uche C., Bublikov P.S., Bode-Aluko C., Rossouw A., Vinogradov I.I., Nechaev A.N., Opeolu B., Petrik L. Chitosan/PEO nanofibers electrospun on metallized track-etched membranes: fabrication and characterization // Mater. Today Chem. 2021. V. 20. P. 100416. https://doi.org/10.1016/j.mtchem.2020.100416
- Rossouw A., Olejniczak A., Olejniczak K., Gorberg B., Vinogradov I., Kristavchuk O., Nechaev A., Petrik L., Perold W., Dmitriev S. Ti and TiO2 magnetron sputtering in roll-to-roll fabrication of hybrid membranes // Surf. Interf. 2022. V. 31. P. 101975. https://doi.org/10.1016/j.surfin.2022.101975
- Demina T.S., Frolova A.A., Istomin A.V., Kotova S.L., Piskarev M.S., Bardakova K.N., Yablokov M.Y., Altynov V.A., Kravets L.I., Gilman A.B., Akopova N.A., Timashev P.S. Coating of polylactide films by chitosan: Comparison of methods // Journal of Applied Polymer Science. 2020. V. 137. № 3. P. 48267. https://doi.org/10.1002/app.48287
- Apel P.Yu., Dmitriev S.N. Micro- and nanoporous materials produced using accelerated heavy ion beams. // Adv. Natur. Sci.: Nanosci. Nanotechnol. 2011. V. 2. P. 013002. https://doi.org/10.1088/2043-6262/2/1/013002
- Almarzooqi F.A., Bilad M.R., Arafat H.A. Development of PVDF membranes for membrane distillation via vapour induced crystallisation // Eur. Polym. J. 2016. V. 77. P. 164–173. https://doi.org/10.1016/j.eurpolymj.2016.01.031
- Huhtamäki T., Tian X., Korhonen J.T., Ras R.H.A. Surface-wetting characterization using contact angle measurements // Nature Protocols. 2018. V. 13. P. 1521–1538. https://doi.org/10.1038/s41596-018-0003-z
- Essalhi M., Khayet M. Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation // J. Memb. Sci. 2013. V. 433. P. 167–179. http://dx.doi.org/10.1016/j.memsci.2013.11.056
- Larkin P.J. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Waltham: Elsevier. 2011, 228 p.
- Россоу А., Виноградов И.И., Серпионов Г.В., Горберг Б.Л., Молоканова Л.Г., Нечаев А.Н. Композитная трековая мембрана, получаемая методом магнетронного напыления нанослоя титана // Мембраны и мембранные технологии. 2022. Т. 12. № 3. С. 200–213. https://doi.org/10.31857/S2218117222030038
- Lovinger A.J. Poly(vinylidene fluoride). In Developments in Crystalline Polymers // Springer Dordr. 1982. P. 195–273. https://doi.org/10.1007/978-94-009-7343-5_5
- Liu F., Hashim N.A., Liu Y., Abed M.R.M., Li K. Progress in the production and modification of PVDF membranes // J. Memb. Sci. 2011. V. 375. P. 1–27. https://doi.org/10.1016/j.memsci.2011.03.014
- Kang G.-D., Cao Y.-M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review // J. Memb. Sci. 2014. V. 463. P. 145–165. http://dx.doi.org/10.1016/j.memsci.2014.03.055
- Martins P., Lopes A.C., Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications // Prog. Polym. Sci. 2014. V. 39. P. 683–706. http://dx.doi.org/10.1016/j.progpolymsci.2013.07.006
- Kumarasinghe H.U., Bandara L.R.A.K., Bandara T.M.W.J., Senadeera G.K.R., Thotawatthage C.A Fabrication of β-phase poly (vinylidene fluoride) piezoelectric film by electrospinning for nanogenerator preparations // Ceylon J. Sci. 2021. V. 50. P. 357–363. https://doi.org/10.4038/cjs.v50i5.7925
- Lei T., Cai X., Wang X., Yu L., Hu X., Zheng G., Lv W., Wang L., Wu D., Sun D., Lin L. Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers // RSC Adv. 2013. V. 3. P. 24952–24958. https://doi.org/10.1039/c3ra42622j
- Quere D. Wetting and roughness // Ann. Rev. Mater. Res. 2008. V. 38. P. 71–99. https://doi.org/10.1146/annurev.matsci.38.060407.132434
- Бойнович Л.Б., Емельяненко А.М. Гидрофобные материалы и покрытия: принципы создания, свойства и применение // Усп. хим. 2008. Т. 77. № 7. С. 619–638.
- Racz G., Kerker S., Kovacs Z., Vatai G., Ebrahimi M., Czermak P. Theoretical and experimental approaches of liquid entry pressure determination in membrane distillation processes // Per. Pol. Chem. Eng. 2014. V. 58. № 2. P. 81–91. https://doi.org/10.3311/PPch.2179
- Liao Y., Wang R., Tian M., Qiu Ch., Fane A.G. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation // J. Memb. Sci. 2013. V. 425–426. P. 30–39. http://dx.doi.org/10.1016/j.memsci.2012.09.023
Supplementary files
