Особенности взаимодействия лизоцима с блок-сополимерами PGLU–PEG

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Исследовано взаимодействие лизоцима белка куриного яйца с блок-сополимерами поли(L-глутаминовой кислоты натриевой соли) и полиэтиленгликоля (PGLU10–PEG, PGLU100–PEG) в водной среде и на границе вода–воздух. При проведении исследований применяли широкий спектр физико-химических методов: турбидиметрия, тензиометрия, флуориметрия, КД-спектроскопия, электрофоретическое светорассеяние, просвечивающая электронная микроскопия. Обнаружено, что на границе вода–воздух возможно образование смешанных адсорбционных слоев при мольных соотношениях блок-сополимер: фермент, не превышающих 2 : 1. В водной среде возможно образование комплексов блок-сополимера PGLU10–PEG и лизоцима со структурой типа ядро–оболочка и комплексов блок-сополимера PGLU100–PEG: лизоцим состава 1 : 1 или 2 : 1 (по молям). Возможность регулировать свойства продуктов взаимодействия фермента и блок-сополимеров позволяет разрабатывать стратегии получения антибактериальных препаратов.

Full Text

Restricted Access

About the authors

Л. Ю. Филатова

Московский государственный университет имени М. В. Ломоносова

Author for correspondence.
Email: luboff.filatova@gmail.com

Химический факультет

Russian Federation, Ленинские горы, д. 1, стр. 3, Москва, 119991

Н. Г. Балабушевич

Московский государственный университет имени М. В. Ломоносова

Email: luboff.filatova@gmail.com

Химический факультет

Russian Federation, Ленинские горы, д. 1, стр. 3, Москва, 119991

References

  1. Basso А., Serban S. Industrial applications of immobilized enzymes–A review // Molecular Catalysis. 2019. V. 479. P. 110607. https://doi.org/10.1016/j.mcat.2019.110607
  2. Dong–Mei L.,Chen D. Recent advances in nano–carrier immobilized enzymes and their applications // Process Biochemistry. 2020. V. 92. P. 464–475. https://doi.org/10.1016/j.procbio.2020.02.005
  3. Bilal M., Hussain N., Heloisa J., Américo–Pinheiro P., Almulaiky Y., Iqbal H.M.N. Multi–enzyme co–immobilized nano–assemblies: Bringing enzymes together for expanding bio–catalysis scope to meet biotechnological challenges // International Journal of Biological Macromolecules. 2021. V. 186. P. 735–749. https://doi.org/10.1016/j.ijbiomac.2021.07.064
  4. Tan Z., Cheng H., Chen G., Ju F., Fernández–Lucas J., Zdarta J., Jesionowski T., Bilal M. Designing multifunctional biocatalytic cascade system by multi–enzyme co–immobilization on biopolymers and nanostructured materials // International Journal of Biological Macromolecules. 2023. V. 227. P. 535–550. https://doi.org/10.1016/j.ijbiomac.2022.12.074
  5. Wu F.G., Jiang Y.W., Chen Z., Yu Z.W. Folding behaviors of protein (lysozyme) confined in polyelectrolyte complex micelle // Langmuir. 2016. V. 32. № 15. P. 3655–3664. https://doi.org/10.1021/acs.langmuir.6b00235
  6. Zhao Y., Haney M.J., Klyachko N.L., Li S., Booth S.L., Higginbotham S.M., Jones J., Zimmerman M.C., Lee Mosley R., Kabanov A.V., Gendelman H.E., Batrakova E.V. Polyelectrolyte complex optimization for macrophage delivery of redox enzyme nanoparticles // Nanomedicine. 2011. V. 6. № 1. P. 25–42. https://doi.org/10.2217/nnm.10.129
  7. Lee Y., Ishii T., Cabral H., Kim H.J., Seo J–H., Nishiyama N., Oshima H., Osada K., Kataoka K. Charge–conversional polyionic complex micelles – efficient nanocarriers for protein delivery into cytoplasm // Angewante Chemie International Edition. 2009. V. 48. № 29. P. 5309–5312. https://doi.org/10.1002/anie.200900064
  8. Jundi A. El., Buwalda S.J., Bakkour Y., Garric X., Nottelet B. Double hydrophilic block copolymers self–assemblies in biomedical Applications // Advances in Colloid and Interface Science. 2020. V. 283. P. 102213. https://doi.org/10.1016/j.cis.2020.102213
  9. Yuan X., Yamasaki Y., Harada A., Kataoka K. Characterization of stable lysozyme–entrapped polyion complex (PIC) micelles with crosslinked core by glutaraldehyde // Polymer. 2005. № 18. V. 46. P. 7749–7758. https://doi.org/10.1016/j.polymer.2005.02.121
  10. Harada A., Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly–distributed micelles from lysozyme and poly(ethylene glycol)–poly(aspartic acid) block copolymer in aqueous medium // Macromolecules. 1998. V. 31. № 2. P. 288–294. https://doi.org/10.1021/ma971277v
  11. Ferraboschi P., Ciceri S., Grisenti P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic // Antibiotics. 2021. V. 10. № 12. P. 1534. https://doi.org/10.3390/antibiotics10121534
  12. Liu Y., Sun Y., Xu Y., Feng H., Fu S., Tang J., Liu W., Sun D., Jiang H., Xu S. Preparation and evaluation of lysozyme–loaded nanoparticles coated with poly–γ–glutamic acid and chitosan // International Journal of Biological Macromolecules. 2013. V. 59. P. 201–207. http://dx.doi.org/10.1016/j.ijbiomac.2013.04.065
  13. Vilcacundo R., M´endez P., Reyes P., Romero H., Pinto A., Carrillo W. Antibacterial activity of hen egg white lysozyme denatured by thermal and chemical treatments // Scientia Pharmaceutica. 2018. V. 86. № 4. P. 48. https://doi.org/10.3390/scipharm86040048
  14. Cegielska–Radziejewska R., Le´snierowski G., Kijowski J. Properties and application of egg white lysozyme and its modified preparations – a review // Polish Journal of Food and Nutrition Sciences. 2008. V. 58. № 1. P. 5–10.
  15. Aminlari L., Mohammadi Hashemi M., Aminlari M. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods // Journal of Food Science. 2014. V. 79. № 6. P. R1077–R1090. https://doi.org/10.1111/1750-3841.12460
  16. Avila M., G´omez–Torres N., Hern´andez M., Garde S. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy–related Clostridium species // International Journal of Food Microbiology. 2014. V. 172. P. 70–75. https://doi.org/10.1016/j.ijfoodmicro.2013.12.002
  17. Tihonov M.M., Kim V.V., Noskov B.A. Impact of a reducing agent on the dynamic surface properties of lysozyme solutions // Journal of Oleo Sciences. 2016. V. 65. № 5. P. 413–418. https://doi.org/10.5650/jos.ess15247
  18. Миляева О.Ю. Динамические поверхностные свойства растворов комплексов белков и полиэлектролитов. Дисс. канд. хим. наук. 2015.
  19. Ishimuro Y., Ueberreiter K. The surface tension of poly(acrylic acid) in aqueous solution // Colloid and polymer Science. 1980. V. 258. P. 928–931. https://doi.org/10.1007/BF01584922
  20. Айдарова С.Б., Алимбекова Г.К., Оспанова Ж.Б., Мусабеков К.Б., Миллер Р. Поверхностное натяжение водных растворов поливинилового спирта и его бинарных смесей с Тритоном Х-100 // Известия Национальной Академии Наук Республики Казахстан. Серия химии и технологии. 2012. № 2. С. 49–55.
  21. Файнерман В.Б. Кинетика формирования адсорбционных слоев на границе раздела раствор–воздух // Успехи химии. 1985. Т. 54. № 10. С. 1613-1631. https://doi.org/10.1070/RC1985v054n10ABEH003150
  22. Guseman A.J., Speer S.L., Perez Goncalves G.M., Pielak G.J. Surface–charge modulates protein–protein interactions in physiologically–relevant environments // Biochemistry. 2018. V. 57. № 11. P. 1681–1684. https://doi.org/10.1021/acs.biochem.8b00061
  23. Filatova L., Emelianov G., Balabushevich N., Klyachko N. Supramolecular assemblies of mucin and lysozyme: Formation and physicochemical characterization // Process Biochemistry. 2022. V. 113. P. 97–106. https://doi.org/10.1016/j.procbio.2021.12.022
  24. Shin S.H.R., McAninch P.T., Henderson I.M., Gomez A., Greene A.C., Carnes E.C., Paxton W.F. Self–assembly/disassembly of giant double–hydrophilic polymersomes at biologically–relevant pH // Chemical Communications Journal. 2018. V. 54. № 65. P. 9043–9046. https://doi.org/10.1039/C8CC05155K
  25. D’Auria S., Staiano M., Kuznetsova I.M., Turoverov K.K. The combined use of fluorescence spectroscopy and X–ray crystallography greatly contributes to elucidating structure and dynamics of proteins // Reviews in Fluorescence 2005. Boston: Springer, 2007. https://doi.org/10.1007/0-387-23690-2_2
  26. Chen B., Zhang H., Xi W., Zhao L., Liang L., Chen Y. Unfolding mechanism of lysozyme in various urea solutions: Insights from fluorescence spectroscopy // Journal of Molecular Structure. 2014. V. 1076. P. 524–528. https://doi.org/10.1016/j.molstruc.2014.08.023
  27. Blake C.C., Koenig D.F., Mairv G.A., North A.C., Phillips D.C., Sarma V.R. Structure of hen egg–white lysozyme: A three–dimensional Fourier synthesis at 2 Å resolution // Nature. 1965. V. 206. № 4986. P. 757–761. https://doi.org/10.1038/206757a0
  28. Filatova L., Balabushevich N., Klyachko N. A physicochemical, structural, microbiological and kinetic study of hen egg white lysozyme in complexes with alginate and chitosan // Biocatalysis and Biotransformation. 2022. V. 40. № 5. P. 327–340. https://doi.org/10.1080/10242422.2021.1909001

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Isotherms of surface tension for solutions of block copolymers PGLU10–PEG (a), PGLU100–PEG (b) in a free state and mixed with lysozyme (7.0 · 10-6 M) in an aqueous medium at 25 ° C. Gray icons are lysozyme, black icons are block copolymers, white icons are mixtures of lysozyme and block copolymers.

Download (113KB)
3. Fig. 2. Dependence of the pH of the medium of mixtures of lysozyme with block copolymers on the concentration of the block copolymer. The black columns are lysozyme with PGLU10–PEG, the white columns are lysozyme with PGLU100–PEG.

Download (91KB)
4. Fig. 4. TEM images and particle size distributions for PGLU100–PEG block copolymer (a) and lysozyme with PGLU100- PEG block copolymer, Z 18:1 (b).

Download (450KB)
5. Fig. 5. TEM images and particle size distributions for PGLU10-PEG block copolymer (a) and lysozyme with PGLU10-PEG block copolymer, Z 18:1 (b).

Download (367KB)
6. Fig. 6. The effect of block copolymers on the position of the maximum intensity of the fluorescence of lysozyme (a), vli‑ the effect of block copolymers on the intensity of the maximum fluorescence of lysozyme (b). Black icons are lysozyme with PGLU10–PEG, white icons are lysozyme with PGLU100–PEG. λmax is the wavelength of the maximum fluorescence intensity; RFU0 is the number of units of lysozyme fluorescence at a wavelength of 339 nm (at λmax); RFU is the number of units of intensity of fluorescence of lysozyme with a block copolymer at a wavelength of 339 nm. RFU0/RFU (λmax) is the ratio of the intensity of the maximum fluorescence of free lysozyme to the intensity of fluorescence of lysozyme with a block copolymer at a wavelength of 339 nm.

Download (149KB)
7. Fig. 7. CD spectra of free lysozyme and enzyme in the composition of associates with block copolymers PGLU10–PEG, PGLU100–PEG. The black line is a free lysozyme, the black dotted line is a lysozyme with PGLU100–PEG (Z 18 : 1), the gray dotted line is a lysozyme with PGLU10–PEG (Z 18 : 1).

Download (61KB)
8. Figure 8. The effect of block copolymers on lysozyme activity. The black columns are lysozyme with PGLU10– PEG, the white columns are lysozyme with PGLU100–PEG.

Download (87KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies