Механохимический синтез нанокомпозитов с заданным составом добавкой растворителя прекурсоров

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Задача данной работы состоит в попытке внедрения в научную практику метода “механохимической перекристаллизации” в твердофазных системах с малыми добавками жидкого растворителя. В качестве такового использовался диметилсульфоксид (ДМСО) – универсальный биполярный апротонный растворитель. Как пример, была изучена механическая активация реакционного процесса AgNO3 + NH4I + zNH4NO3 (разбавитель) + yS + xДМСО = AgI + yS* + (z + 1)NH4NO3 + + xДМСО, где z ≈ 5, y ≈ 1, x << 1 – мольные доли. Было установлено образование наночастиц серы (S*) и йодида серебра (AgI), а по сути, сделан синтез нанокомпозитов S*/AgI с контролируемым содержанием компонентов. Применение разбавителя NH4NO3 – нецелевого продукта механосинтеза – обеспечивало стабилизацию размеров наночастиц. Получение наночастиц в среде ДМСО достигается не прямой механической активацией, а в результате обычной перекристаллизации (непрерывный процесс растворения-кристаллизации серы) или реакционной перекристаллизации (непрерывный процесс растворения AgNO3, NH4I и их реакция с кристаллизацией AgI). Первый вариант реализуется при получении S*, а второй – AgI. Целевые продукты (S*, AgI и S*/AgI) отмывались от водорастворимых компонентов (NH4NO3, ДМСО) с применением ультразвуковой бани. Предложенное техническое решение было осуществлено в шаровых планетарных мельницах с различной фурнитурой.

Full Text

Restricted Access

About the authors

Ф. Х. Уракаев

Институт геологии и минералогии им. В. С. Соболева СО РАН

Author for correspondence.
Email: urakaev@igm.nsc.ru
Russian Federation, пр. Академика Коптюга, 3, Новосибирск, 630090

References

  1. Burkitbayev M.M., Urakaev F.Kh. Temperature dependence of sulfur solubility in dimethyl sulfoxide and changes in concentration of supersaturated sulfur solutions at 25 degrees C // J. Mol. Liq. 2020. V. 316. P. 113886. https://doi.org/10.1016/j.molliq.2020.113886
  2. Matsuoka M., Danzuka K. Solid-state recrystallization behavior of binary inorganic salt systems by mechanochemical processing // J. Chem. Eng. Japan. 2009. V. 42. № 6. P. 393–399. https://doi.org/10.1252/jcej.09we068
  3. Уракаев Ф.Х., Булавченко А.И., Уралбеков Б.М., Массалимов И.А., Татыкаев Б.Б., Болатов А.К., Джарлыкасимова Д.Н., Буркитбаев М.М. Механохимический синтез коллоидных частиц серы в системе Na2S2O3–H2(C4H4O4)–Na2SO3 // Коллоидный журнал. 2016. Т. 78. № 2. С. 193–202. https://doi.org/10.7868/S0023291216020154
  4. Kadja G.T., Suprianti T.R., Ilmi M.M., Khalil M., Mukti R.R. Sequential mechanochemical and recrystallization methods for synthesizing hierarchically porous ZSM-5 zeolites // Microporous Mesoporous Mater. 2020. V. 308. P. 110550. https://doi.org/10.1016/j.micromeso.2020.110550
  5. Nieto-Castro D., Garcés-Pineda F.A., Moneo-Corcuera A., Pato-Doldan B., Gispert-Guirado F., Benet-Buchholz J., Galán-Mascarós J.R. Effect of mechanochemical recrystallization on the thermal hysteresis of 1D FeII-triazole spin crossover polymers // Inorg. Chem. 2020. V. 59. № 12. P. 7953–7959. https://doi.org/10.1021/acs.inorgchem.9b03284
  6. Уракаев Ф.Х., Хан Н.В., Татыкаев Б.Б., Шалабаев Ж.С., Надиров Р.К., Буркитбаев М.М. Синтез и фотокаталитические свойства коллоидных частиц композита хлорид серебра – серебро // Коллоидный журнал. 2020. Т. 82. № 1. С. 101–105. https://doi.org/10.31857/S0023291220010164
  7. Michalchuk A.A., Boldyreva E.V., Belenguer A.M., Emmerling F., Boldyrev V.V. Tribochemistry, mechanical alloying, mechanochemistry: What is in a name? // Front. Chem. 2021. V. 9. P. 685789. https://doi.org/10.3389/fchem.2021.685789
  8. Tsuzuki T. Mechanochemical synthesis of metal oxide nanoparticles // Commun. Chem. 2021. V. 4. № 1. P. 143. https://doi.org/10.1038/s42004-021-00582-3
  9. Shpotyuk O., Ingram A., Filipecki J., Shpotyuk Y., Cebulski J., Bujňáková Z.L., Baláž P. Volumetric nanostructurization in glassy arsenoselenides driven by high-energy mechanical dry- and wet-milling // Macromolecular Symposia. 2022. V. 405. № 1. P. 2100253. https://doi.org/10.1002/masy.202100253
  10. Cuccu F., De Luca L., Delogu F., Colacino E., Solin N., Mocci R., Porcheddu A. Mechanochemistry: New tools to navigate the uncharted territory of “impossible” reactions // ChemSusChem. 2022. V. 15. № 17. P. e202200362. https://doi.org/10.1002/cssc.202200362
  11. Hwang S., Grätz S., Borchardt L. A guide to direct mechanocatalysis // Chem. Commun. 2022. V. 58. № 11. P. 1661-1671. https://doi.org/10.1039/d1cc05697b
  12. Boldyreva E.V. Spiers memorial lecture: Mechanochemistry, tribochemistry, mechanical alloying – retrospect, achievements and challenges // Faraday Discuss. 2023. V. 241. P. 9–62. https://doi.org/10.1039/D2FD00149G
  13. Dubadi R., Huang S.D., Jaroniec M. Mechanochemical synthesis of nanoparticles for potential antimicrobial applications // Materials. 2023. V. 16. № 4. P. 1460. https://doi.org/10.3390/ma16041460
  14. Hopper N., Sidoroff F., Rana R., Bavisotto R., Cayer-Barrioz J., Mazuyer D., Tysoe W.T. Exploring mechanochemical reactions at the nanoscale: Theory versus experiment // Phys. Chem. Chem. Phys. 2023. V. 25. P. 15855–15861. https://doi.org/10.1039/D3CP00980G
  15. Avvakumov E.G., Senna M., Kosova N.V. Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies. Boston: Springer US, 2013. 208 pp.
  16. Lavalle P., Boulmedais F., Schaaf P., Jierry L. Soft-mechanochemistry: Mechanochemistry inspired by nature // Langmuir. 2016. V. 32. № 29. P. 7265–7276. https://doi.org/10.1021/acs.langmuir.6b01768
  17. Friščić T., Childs S.L., Rizvi S.A.A., Jones W. The role of solvent in mechanochemical and sonochemical cocrystal formation: A solubility-based approach for predicting cocrystallisation outcome // CrystEngComm. 2009. V. 11. № 3. P. 418–426. https://doi.org/10.1039/B815174A
  18. Meenatchi B., Renuga V. Protic ionic liquids assisted synthesis and characterization of sulfur nanoparticles and CdS and ZnS nanomaterials // Chem. Sci. Trans. 2015. V. 4. № 2. P. 577–587. https://doi.org/10.7598/cst2015.1028
  19. Ying P., Yu J., Su W. Liquid‐assisted grinding mechanochemistry in the synthesis of pharmaceuticals // Adv. Synth. Catal. 2021. V. 363. № 5. P. 1246-1271. https://doi.org/10.1002/adsc.202001245
  20. Zaikin P.A., Dyan O.T., Elanov I.R., Borodkin G.I. Ionic liquid-assisted grinding: An electrophilic fluorination benchmark // Molecules. 2021. V. 26. № 19. P. 5756. https://doi.org/10.3390/molecules26195756
  21. Kosimov A., Yusibova G., Aruväli J., Paiste P., Käärik M., Leis J., Kikas A., Kisand V., Šmits K., Kongi N. Liquid-assisted grinding/compression: A facile mechanosynthetic route for the production of high-performing Co–N–C electrocatalyst materials // Green Chem. 2022. V. 24. № 1. P. 305–314. https://doi.org/10.1039/D1GC03433B
  22. Loya J.D., Li S.J., Unruh D.K., Hutchins K.M. Mechanochemistry as a tool for crystallizing inaccessible solids from viscous liquid components // Cryst. Growth Des. 2022. V. 22. № 1. P. 285–292. https://doi.org/10.1021/acs.cgd.1c00929
  23. Du G.-X., Xue Q., Ding H., Li Z. Mechanochemical effects of ZnO powder in a wet super-fine grinding system as indicated by instrumental characterization // Int. J. Min. Process. 2015. V. 141. P. 15–19. https://doi.org/10.1016/j.minpro.2015.06.008
  24. Lu J., Lu Z., Li X., Xu H., Li X. Recycling of shell wastes into nanosized calcium carbonate powders with different phase compositions // J. Clean. Prod. 2015. V. 92. P. 223-229. https://doi.org/10.1016/j.jclepro.2014.12.093
  25. Уракаев Ф.Х., Татыкаев Б.Б., Буркитбаев М.М., Бахадур А.М., Уралбеков Б.М. Механохимический синтез коллоидных частиц бромида серебра в системе NaBr–AgNO3–NaNO3 // Коллоидный журнал. 2016. Т. 78. № 4. С. 501–508. https://doi.org/10.7868/S0023291216040194
  26. Lu J., Cong X., Li Y., Hao Y., Wang C. Scalable recycling of oyster shells into high purity calcite powders by the mechanochemical and hydrothermal treatments // J. Clean. Prod. 2018. V. 172. P. 1978–1985. https://doi.org/10.1016/j.jclepro.2017.11.228
  27. Kurniawan T., Muraza O., Hakeem A.S., Al-Amer A.M. Mechanochemical route and recrystallization strategy to fabricate mordenite nanoparticles from natural zeolites // Cryst. Growth Des. 2017. V. 17. № 6. P. 3313–3320. https://doi.org/10.1021/acs.cgd.7b00295
  28. de Oliveira Y.S., Oliveira A.C., Ayala A.P. Mechanochemically induced solid state transformations: The case of raloxifene hydrochloride // Eur. J. Pharm. Sci. 2018. V. 114. P. 146–154. https://doi.org/10.1016/j.ejps.2017.11.028
  29. Shalabayev Zh., Baláž M., Daneu N., Dutkova E., Bujňáková Z., Kaňuchová M., Dankova Z., Balážová Ľ., Tkáčiková Ľ., Urakaev F., Burkitbayev M. Sulfur-mediated mechanochemical synthesis of spherical and needle-like copper sulfide nanocrystals with antibacterial activity // ACS Sustain. Chem. Eng. 2019. V. 7. № 15. P. 12897–12909. https://doi.org/10.1021/acssuschemeng.9b01849
  30. Yang P., Li X., Li Z., Fang X., Zhang K., Zhuang W., Wu J., Zhu C., Ying H. Green mechanochemical strategy for the construction of a new bio-based nylon 524T ternary salt // ACS Sustain. Chem. Eng. 2022. V. 10. № 11. P. 3513–3520. https://doi.org/10.1021/acssuschemeng.1c07869
  31. Urakaev F.Kh. Preparation, simulation and applications of monodisperse sulphur particles (overview) // Int. J. Computational Mater. Sci. Surf. Eng. 2011. V. 4. № 1. P. 69–86. https://doi.org/10.1504/IJCMSSE.2011.037353
  32. Urakaev F.Kh., Abuyeva B.B., Vorobyeva N.A., Mun G.A., Uralbekov B.M., Burkitbayev M.M. Sulfur nanoparticles stabilized in the presence of water-soluble polymers // Mendeleev Communications. 2018. Vol. 27. № 2. P. 161–163. https://doi.org/10.1016/j.mencom.2018.03.017
  33. Массалимов И.А., Самсонов М.Р., Ахметшин Б.С., Мустафин А.Г., Буркитбаев М.М., Шалабаев Ж.С., Уракаев Ф.Х. Совместное осаждение из растворов полисульфидов нанокомпозитов на основе коллоидных частиц серы и карбонатов щелочноземельных металлов // Коллоидный журнал. 2018. Т. 80. № 4. С. 424–434. https://doi.org/10.1134/S0023291218040080
  34. Urakaev F.Kh., Burkitbayev M.M., Khan N.V. Biological activity of sulfur nanoparticles in the sulfur–dimethyl sulfoxide–water system // Int. J. Biol. Chem. 2022. V. 15. № 2. P. 54–75. https://doi.org/10.26577/ijbch.2022.v15.i2.09
  35. Khan N.V., Burkitbayev M.M., Urakaev F.Kh. Preparation and properties of nanocomposites in the systems S-AgI and S-Ag2S-AgI in dimethyl sulfoxide // IOP Conference Series: Materials Science and Engineering. 2019. V. 704. № 1. P. 012007. https://doi.org/10.1088/1757-899X/704/1/012007
  36. Khan N., Baláž M., Burkitbayev M., Tatykayev B., Shalabayev Z., Nemakayeva R., Jumagaziyeva A., Niyazbayeva A., Rakhimbek I., Beldeubayev A., Urakaev F. DMSO- mediated solvothermal synthesis of S/AgX (X = Cl, Br) microstructures and study of their photocatalytic and biological activity // Appl. Surf. Sci. 2022. V. 601. P. 154122. https://doi.org/10.1016/j.apsusc.2022.154122
  37. Khan N.V., Baláž M., Burkitbayev M.M., Tatykayev B.B., Shalabayev Zh.S., Niyazbayeva A.I., Urakaev F.Kh. Solvothermal DMSO-mediated synthesis of the S/AgI microstructures and their testing as photocatalysts and biological agents // Int. J. Biol. Chem. 2022. V. 15. № 1. P. 79–89. https://doi.org/10.26577/ijbch.2022.v15.i1.09
  38. Urakaev F. Kh. Scientific principles for preparation nanoscale particles by the exchange mechanochemical reactions (overview) // Int. J. Computational Mater. Sci. Surf. Eng. 2011. V. 4. № 4. P. 347–373. https://doi.org/10.1504/IJCMSSE.2011.045585
  39. Urakaev F.Kh. Mechanochemical synthesis of nanoparticles by a dilution method: Determination of the particle mixing coefficient in a ball mill // Mendeleev Commun. 2012. V. 22. № 4. P. 215–217. https://doi.org/10.1016/j.mencom.2012.06.016
  40. Urakaev F.Kh. Preparation of NaIn(WO4)(2) nanocrystals and a charge for crystal growth via the free-of-rubbing mechanical activation of the Na2CO3-In2O3-WO3 system // Mendeleev Commun. 2016. V. 26. № 6. P. 546–548. https://doi.org/10.1016/j.mencom.2016.11.030
  41. LeBel R.G., Goring D.A.I. Density, viscosity, refractive index, and hygroscopicity of mixtures of water and dimethyl sulfoxide // J. Chem. Eng. Data. 1962. V. 7. № 1. P. 100–101. https://doi.org/10.1021/je60012a032
  42. Ellson R., Stearns R., Mutz M., Brown C., Browning B., Harris D., Qureshi S., Shieh J., Wold D. In situ DMSO hydration measurements of HTS compound libraries // Comb. Chem. High Throughput Screen. 2005. V. 8. № 6. P. 489–498. https://doi.org/10.2174/1386207054867382
  43. Waybright T.J., Britt J.R., McCloud T.G. Overcoming problems of compound storage in DMSO: Solvent and process alternatives // J. Biomol. Screen. 2009. V. 14. № 6. P. 708–715. https://doi.org/10.1177/1087057109335670
  44. Rabiei M., Palevicius A., Dashti A., Nasiri S., Monshi A., Doustmohammadi A., Vilkauskas A., Janusas G. X-ray diffraction analysis and Williamson-Hall method in USDM model for estimating more accurate values of stress-strain of unit cell and super cells (2×2×2) of hydroxyapatite, confirmed by ultrasonic pulse-echo test // Materials. 2021. V. 14. № 11. P. 2949. https://doi.org/10.3390/ma14112949
  45. Himabindu B., Latha Devi N.S.M.P., Rajini Kanth B. Microstructural parameters from X-ray peak profile analysis by Williamson–Hall models; A review // Materials Today: Proceedings. 2021. V. 47. № 14. P. 4891–4896. https://doi.org/10.1016/j.matpr.2021.06.256
  46. Tirpude M.P., Tayade N.T. Frustrate microstructures composed PbS cluster’s size perspective from XRD by variant models of Williamson–Hall plot method // Preprint. 2022. 25 April. 36 pp. https://doi.org/10.21203/rs.3.rs-1586320/v1
  47. Nims C., Cron B., Wetherington M., Macalady J., Cosmidis J. Low frequency Raman Spectroscopy for micron-scale and in vivo characterization of elemental sulfur in microbial samples // Sci. Rep. 2019. V. 9. № 1. P. 7971. https://doi.org/10.1038/s41598-019-44353-6
  48. Assis M., Groppo Filho F.C., Pimentel D.S., Robeldo T., Gouveia A.F., Castro T.F.D., Fukushima H.C.S., de Foggi C.C., da Costa J.P.C., Borra R.C., Andrés J., Longo E. Ag nanoparticles / AgX (X= Cl, Br, I) composites with enhanced photocatalytic activity and low toxicological effects // ChemistrySelect. 2020. V 5. № 15. P. 4655–4673. https://doi.org/10.1002/slct.202000502
  49. Urakaev F.Kh. Mechanism and kinetics of mechanochemical processes // High-Energy Ball Milling: Mechanochemical Processing of Nanopowders. Editor: M. Sopicka-Lizer. Boston-New York-Washington: Woodhead Publishing Limited, 2010. 422 pp. P. 9–44. https://doi.org/10.1533/9781845699444.1.9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Micrographs of TEM of washed sulfur particles from samples of experiments on mechanochemical recrystallization of sulfur with the addition of 1 ml (a) and 5 ml (b) DMSO.

Download (123KB)
3. Fig. 2. XRD data of the sulfur sample obtained by washing and drying the MA product according to scheme (1) with the addition of 2 ml DMSO.

Download (115KB)
4. Fig. 3. The result of Raman spectroscopy of a sulfur sample obtained by washing and drying the MA product according to scheme (1) with the addition of 2 ml DMSO.

Download (85KB)
5. Fig. 4. SEM-EMF data of a sulfur sample obtained by washing and drying the MA product by reaction (1) with the addition of 3 ml DMSO. The inserts provide a microphotography of the SEM of the analysis area (a) and a table of elemental composition (b).

Download (108KB)
6. Fig. 5. Diffractograms of S*/AgI samples with the addition of 5 ml (a) and 1 ml (b) DMSO.

Download (273KB)
7. Fig. 6. Raman spectroscopy data for S*/AgI nanocomposites prepared by mechanochemical recrystallization with additives of 5 ml (a) and 1 ml (b) DMSO.

Download (196KB)
8. Fig. 7. SEM micrography of the S*/AgI sample obtained with the addition of 1 ml DMSO.

Download (264KB)
9. Fig. 8. SEM-EMF data for the S*/AgI sample obtained with the addition of 5 ml DMSO: (a) SEM micrograph with an EMF application area marked with a cross; (b) the result of the EMF determination of the elemental composition; (c) the blitz of the content of the elements.

Download (522KB)
10. Fig. 9. XRD results of nanocomposite samples S*/AgI obtained in a Pulverizette 5 mill with additives of 1, 2, 3 and 5 ml DMSO.

Download (169KB)
11. Fig. 10. Raman spectroscopy data for S*/AgI nanocomposites obtained at the Pulverizette 5 mill with additives of 1, 2, 3 and 5 ml DMSO.

Download (152KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies