Кинетические закономерности синтеза наночастиц диоксида кремния при гетерогенном гидролизе тетраэтоксисилана с использованием L-аргинина в качестве катализатора

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе исследована кинетика синтеза наночастиц кремнезема (< 50 нм) в условиях гетерогенного гидролиза тетраэтоксисилана (ТЭОС) с использованием L-аргинина в качестве щелочного катализатора. Определены скорости процесса образования диоксида кремния в диапазоне температур 10–95°C при концентрациях катализатора 6–150 мМ. Показано, что энергия активации процесса зависит от концентрации катализатора и изменяется в диапазоне 21.5–13.9 кДж/моль, линейно уменьшаясь с ростом концентрации L-аргинина в системе. Проведена оценка критерия сохранения монодисперсности частиц SiO2 при их доращивании “на затравку”. Экспериментально установлена зависимость плотности кремнеземных частиц субмикронных размеров от температуры отжига. В диапазоне температур 200–1000°C плотность частиц меняется от 2.04 до 2.20 г/см3.

Full Text

Restricted Access

About the authors

В. М. Масалов

Институт физики твердого тела имени Ю.А. Осипьяна РАН

Email: sovyk@inbox.ru
Russian Federation, ул. Академика Осипьяна, 2, Черноголовка, Московская обл., 142432

Н. С. Сухинина

Институт физики твердого тела имени Ю.А. Осипьяна РАН

Email: sovyk@inbox.ru
Russian Federation, ул. Академика Осипьяна, 2, Черноголовка, Московская обл., 142432

Д. Н. Совык

Институт общей физики им. А.М. Прохорова РАН

Author for correspondence.
Email: sovyk@inbox.ru
Russian Federation, ул. Вавилова, 38, Москва, 119991

В. Г. Ральченко

Институт общей физики им. А.М. Прохорова РАН

Email: sovyk@inbox.ru
Russian Federation, ул. Вавилова, 38, Москва, 119991

Г. А. Емельченко

Институт физики твердого тела имени Ю.А. Осипьяна РАН

Email: sovyk@inbox.ru
Russian Federation, ул. Академика Осипьяна, 2, Черноголовка, Московская обл., 142432

References

  1. Korach L., Czaja K., Kovaleva N.Y. Sol–gel material as a support of organometallic catalyst for ethylene polymerization // Eur. Poly. J. 2008. V. 44. № 3. P. 889–903. https://doi.org/10.1016/j.eurpolymj.2007.11.037
  2. Li L., Ewing C.S., Abdelgaid M. et al. Binding of CO and O on low-symmetry Pt clusters supported on amorphous silica // The Journal of Physical Chemistry C. 2021. V. 125. № 25. P. 13780–13787. https://doi.org/10.1021/acs.jpcc.1c01452
  3. Тихомирова Т.И., Нестеренко П.Н. Особенности реакций комплексообразования на поверхности модифицированных кремнеземных сорбентов: сорбция и комплексообразовательная хроматография металлов // Координационная химия. 2022. Т. 48. № 10. С. 615–624. https://doi.org/10.31857/S0132344X22100085
  4. Chen Y., Li L., Xu Q. et al. Recent advances in opal/inverted opal photonic crystal photocatalysts // Sol. RRL. 2021. V. 5. № 6. P. 2000541. https://doi.org/10.1002/solr.202000541
  5. Moon B.-S., Hwang H.-S., Park J.-G. Influences of organic additive molecular weight in colloidal-silica-based slurry on final polishing characteristics of silicon wafer // Journal of The Electrochemical Society. 2012. V. 159. № 2. H107–H111. https://doi.org/10.1149/2.032202jes
  6. Bae J.-Y., Han M.-H., Lee S.-J. et al. Silicon wafer CMP slurry using a hydrolysis reaction accelerator with an amine functional group remarkably enhances polishing rate // Nanomaterials. 2022. V. 12. № 21. P. 3893. https://doi.org/10.3390/nano12213893
  7. Ding Y., Xiao Z., Chen F. et al. A mesoporous silica nanocarrier pesticide delivery system for loading acetamiprid: Effectively manage aphids and reduce plant pesticide residue // Sci Total Environ. 2023. V. 863. P. 160900. https://doi.org/10.1016/j.scitotenv.2022.160900
  8. Zhang Z., Li W., Chang D. et al. A combination therapy for androgenic alopecia based on quercetin and zinc/copper dual-doped mesoporous silica nanocomposite microneedle patch // Bioactive Mater. 2023. V. 24. P. 81–95. https://doi.org/10.1016/j.bioactmat.2022.12.007
  9. Wang H., Chang X., Ma Q. et al. Bioinspired drug-delivery system emulating the natural bone healing cascade for diabetic periodontal bone regeneration // Bioactive Mater. 2023. V. 21. P. 324–339. https://doi.org/10.1016/j.bioactmat.2022.08.029
  10. Kerry R.G., Singh K.RB, Mahari S. et al. Bioactive potential of morin loaded mesoporous silica nanoparticles: A nobel and efficient antioxidant, antidiabetic and biocompatible abilities in in-silico, in-vitro, and invivo models // OpenNano. 2023. V. 10. P. 100126. https://doi.org/10.1016/j.onano.2023.100126
  11. Rivera D., Harris J.M. In situ ATR-FT-IR kinetic studies of molecular transport and surface binding in thin sol–gel films: Reactions of chlorosilane reagents in porous silica materials // Anal. Chem. 2001. V. 73. № 3. P. 411–423. https://doi.org/10.1021/ac000947j
  12. McCain K.S., Schluesche P., Harris J.M. Poly(amidoamine) dendrimers as nanoscale diffusion probes in sol–gel films investigated by total internal reflection fluorescence spectroscopy // Anal. Chem. 2004 V. 76. № 4. P. 939–946. https://doi.org/10.1021/ac0351015
  13. McCain K.S., Harris J.M. Total internal reflection fluorescence-correlation spectroscopy study of molecular transport in thin sol–gel films // Anal. Chem. 2003. V. 75. № 14. P. 3616–3624. https://doi.org/10.1021/ac0207731
  14. McCain K.S., Hanley D.C., Harris J.M. Single-molecule fluorescence trajectories for investigating molecular transport in thin silica sol–gel films // Anal. Chem. 2003. V. 75. № 17. P. 4351–4359. https://doi.org/10.1021/ac0345289
  15. Johnson S.A., Olivier P.J., Mallouk T.E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates // Science. 1999. V. 283. № 5404. P. 963–965. https://doi.org/10.1126/science.283.5404.963
  16. Masalov V.М., Dolganov P.V., Sukhinina N.S. et al. Synthesis of polymer-based inverted opal and transformation of its optical properties // Advances in Nano Research. 2014. V. 2. № 1. P. 69–76. https://doi.org/10.12989/anr.2014.2.1.069
  17. Lei Z., Xiao Y., Dang L. et al. Fabrication of ultra-large mesoporous carbon with tunable pore size by monodisperse silica particles derived from seed growth process // Microporous Mesoporous Mater. 2006. V. 96. № 1–3. P. 127–134. https://doi.org/10.1016/j.micromeso.2006.06.031
  18. Сухинина Н.С., Масалов В.М., Жохов А.А. и др. Синтез и модификация углеродных инвертированных опалоподобных наноструктур на основе антрацена и их электрохимические характеристики // Российские нанотехнологии. 2017. Т. 12. № 11–12. С. 54–61.
  19. Zakhidov A.A., Baughman R.H., Iqbal Z. et al. Carbon structures with three-dimensional periodicity at optical wavelengths // Science. 1998. V. 282. № 5390. P. 897–901. https://doi.org/10.1126/science.282.5390.897
  20. Dai B., Shu G., Ralchenko V. et al. 2D inverse periodic opal structures in single crystal diamond with incorporated silicon-vacancy color centers // Diamond and Related Materials. 2017. V. 73. P. 204–209. https://doi.org/10.1016/J.DIAMOND.2016.09.022
  21. Kolbe G. Das komplexchemiche Verhalten der Kieselsaure. Dissertation, Friedrich-Schiller Universitat Jena, 1956.
  22. Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range // J. Colloid Interface Sci. 1968. V. 26. № 1. P. 62–69. https://doi.org/10.1016/0021-9797(68)90272-5
  23. Bogush G.A., Tracy M.A., Zukovski IV C.F. Preparation of monodisperse silica particles: Control of size and mass fraction // J. Non-Cryst. Solids. 1988. V. 104. № 1. P. 95–106. https://doi.org/10.1016/0022-3093(88)90187-1
  24. Giesche H. Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics // J. Eur. Ceram. Soc. 1994. V. 14. № 3. P. 189–204. https://doi.org/10.1016/0955-2219(94)90087-6
  25. Chang S.M., Lee M., Kim W.-S. Preparation of large monodispersed spherical silica particles using seed particle growth // J. Colloid Interface Sci. 2005. V. 286. № 2. P. 536–542. https://doi.org/10.1016/j.jcis.2005.01.059
  26. van Helden A.K., Jansen J.W., Vrij A. Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents // J. Colloid Interface Sci. 1981. V. 81. № 2. P. 354–368. https://doi.org/10.1016/0021-9797(81)90417-3
  27. Makrides A.C., Turner M., Slaughter J. Condensation of silica from supersaturated silicic acid solutions // J. Colloid Interface Sci. 1980. V. 73. № 2. P. 345–367.https://doi.org/10.1016/0021-9797(80)90081-8
  28. Bailey J.K., Meckartney M.L. Formation of colloidal silica particles from alkoxides // Colloids and Surfaces. 1992. V. 63. № 1–2. P. 151–161. https://doi.org/10.1016/0166-6622(92)80081-C
  29. van Blaaderen A., van Geest J., Vrij A. Monodisperse colloidal silica spheres from tetraalkoxysilanes: Particle formation and growth mechanism // J. Colloid Interface Sci. 1992. V. 154. № 2. P. 481–501. https://doi.org/10.1016/0021-9797(92)90163-G
  30. Chen S.-L. Preparation of monosize silica spheres and their crystalline stack // Colloids and Surfaces. 1998. V. 142. № 1. P. 59–63. https://doi.org/10.1016/S0927-7757(98)00276-3
  31. Yokoi T., Sakomoto Y., Terasaki O. et al. Periodic arrangement of silica nanospheres assisted by amino acids // J. Am. Chem. Soc. 2006. V. 128. № 42. P. 13664–13665. https://doi.org/10.1021/ja065071y
  32. Davis T.M., Snyder M.A., Krohn J.E., Tsapatsis M. Nanoparticles in lysine–silica sols // Chem. Mater. 2006. V. 18. № 25. P. 5814–5816. https://doi.org/10.1021/cm061982v
  33. Hartlen K.D., Athanasopoulos A.P.T., Kitaev V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays // Langmuir. 2008. V. 24. № 5. P. 1714–1720. https://doi.org/10.1021/la7025285
  34. Самаров Э.Н., Мокрушин А.Д., Масалов В.М., Абросимов Г.Е., Емельченко Г.А. Структурная модификация синтетических опалов в процессе их термообработки // Физика твердого тела. 2006. Т. 48. № 7. С. 1212–1215.
  35. Matsoukas T., Gulari E. Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate // J. Colloid Interface Sci. 1988. V. 124. № 1. P. 252–261. https://doi.org/10.1016/0021-9797(88)90346-3
  36. Matsoukas T., Gulari E. Monomer-addition growth with a slow initiation step: A growth model for silica particles from alkoxides // J. Colloid Interface Sci. 1989. V. 132. № 1. P. 13–21. https://doi.org/10.1016/0021-9797(89)90210-5
  37. Chen Sh.-L. Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate // Ind. Eng. Chem. Res. 1996. V. 35. № 12. P. 4487–4493. https://doi.org/10.1021/ie9602217
  38. Ратников В.В. Определение пористости синтетических опалов и пористого кремния рентгеновским методом // ФТТ. 1997. Т. 39. № 5. С. 956–958.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the concentration of silicon dioxide during the hydrolysis of TEOS at a temperature of 60 °, The concentration of L-arginine is 6 mM and the mixing intensity of the reaction mixture is different: 1 ‑ the rotation speed of the agitator is 200 rpm, 2 – 600 rpm. On the right axis of the ordinate, the veli is postponed‑ the rank of the degree of conversion of the TEOS.

Download (105KB)
3. Fig. 2. Kinetic lines of the heterogeneous hydrolysis-condensation of TEOS at different temperatures and concentrations of L-arginine.

Download (637KB)
4. Fig. 3. The dependence of the speed of the formation process SiO2 from temperature for different concentrations L-arginine.

Download (122KB)
5. Fig. 4. Temperature dependences of the process rate constant at different concentrations of the L-arginine catalyst.

Download (123KB)
6. Fig. 5. Dependence of the activation energy of the process on the concentration of L-arginine.

Download (75KB)
7. 6. Silicon dioxide particles obtained by heterogeneous hydrolysis of TEOS in the presence of L-arginine. Silicon dioxide particles D = 132.7 ± 2.1 nm (b) obtained by incrementing particles with a diameter D = 42.9 ± 2.5 nm (a). The inserts show normal particle size distributions.

Download (331KB)
8. Fig. 7. SEM images of SiO2 particles obtained by seed growth: (a) bimodal particle size distribution; (b) monodisperse particles.

Download (513KB)
9. Figure 8. Dependence of the density of silicon dioxide particles with a diameter of ~ 300 nm obtained under conditions of heterogeneous hydrolysis of TEOS in the presence of L-arginine on the annealing temperature. The duration of annealing was 24 hours.

Download (72KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies