Исследование механической и химической стабильности супергидрофобных покрытий на основе реакционноспособных сополимеров глицидилметакрилата и фторалкилметакрилатов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе исследуется устойчивость полимерных покрытий на основе реакционноспособных сополимеров глицидилметакрилата и фторалкилметакрилатов на поверхности текстурированного алюминия и хлопчатобумажной ткани к действию агрессивных сред и механическому воздействию. Получаемые покрытия обеспечивают достижение стабильного во времени гетерогенного смачивания с начальными углами смачивания до 170°, препятствующего проникновению коррозионных сред внутрь иерархической структуры. Показано влияние состава реакционноспособных сополимеров с содержанием атомов фтора в мономерном звене от 3 до 7 на устойчивость полимерных покрытий к длительным контактам со средами различной кислотности, кавитационному воздействию и абразивному истиранию.

Full Text

Restricted Access

About the authors

В. В. Климов

Волгоградский государственный технический университет; Московский государственный университет им. М. В. Ломоносова

Author for correspondence.
Email: vicklimov@gmail.com

Химический факультет

Russian Federation, 400005, Волгоград, пр. им. Ленина, 28; 119991, Москва, Ленинские горы, д. 1, стр. 3

О. В. Коляганова

Волгоградский государственный технический университет

Email: vicklimov@gmail.com
Russian Federation, 400005, Волгоград, пр. им. Ленина, 28

Е. В. Брюзгин

Волгоградский государственный технический университет

Email: vicklimov@gmail.com
Russian Federation, 400005, Волгоград, пр. им. Ленина, 28

А. В. Навроцкий

Волгоградский государственный технический университет

Email: vicklimov@gmail.com
Russian Federation, 400005, Волгоград, пр. им. Ленина, 28

И. А. Новаков

Волгоградский государственный технический университет

Email: vicklimov@gmail.com
Russian Federation, 400005, Волгоград, пр. им. Ленина, 28

References

  1. Nosonovsky M., Bhushan B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering // Current Opinion in Colloid & Interface Science. 2009. V. 14. № 4. P. 270–280. https://doi.org/10.1016/j.cocis.2009.05.004
  2. Sharafudeen R. Smart superhydrophobic anticorrosive coatings in Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications, Elsevier, 2020. P. 515–534. https://doi.org/10.1016/B978-0-12-849870-5.00009-4
  3. Azimi Yancheshme A., Momen G., Jafari Aminabadi R. Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review // Advances in Colloid and Interface Science. 2020. V. 279. P. 102155. https://doi.org/10.1016/j.cis.2020.102155.
  4. Boveri G., Corozzi A., Veronesi F. et al. Different approaches to low-wettable materials for freezing environments: Design, performance and durability // Coatings. 2021. V. 11. № 1. P. 77. https://doi.org/10.3390/coatings11010077
  5. Tzianou M., Thomopoulos G., Vourdas N. et al. Tailoring wetting properties at extremes states to obtain antifogging functionality // Advanced Functional Materials. 2021. V. 31. № 1. P. 2006687. https://doi.org/10.1002/adfm.202006687
  6. Park J.T., Kim J.H., Lee D. Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings // Nanoscale. 2014. V. 6. № 13. P. 7362–7368. https://doi.org/10.1039/C4NR00919C.
  7. Hwang G.B., Page K., Patir A. et al. The anti-biofouling properties of superhydrophobic surfaces are short-lived // ACS Nano. 2018. V. 12. № 6. P. 6050–6058. https://doi.org/10.1021/acsnano.8b02293
  8. Roach P., Shirtcliffe N. Superhydrophobicity and Self‐Cleaning // In: Self‐Cleaning Materials and Surfaces, Wiley, 2013. P. 1–32. https://doi.org/10.1002/9781118652336.ch1
  9. Shadmani S., Khodaei M., Chen X. et al. Superhydrophobicity through Coatings Prepared by Chemical Methods // In: Superhydrophobic Surfaces–Fabrications to Practical Applications, IntechOpen, 2020. https://doi.org/10.5772/intechopen.92626
  10. Dimitrakellis P., Ellinas K., Kaprou G.D. et al. Bactericidal action of smooth and plasma micro‐nanotextured polymeric surfaces with varying wettability, enhanced by incorporation of a biocidal agent // Macromolecular Materials and Engineering. 2021. V. 306. № 4. P. 2000694. https://doi.org/10.1002/mame.202000694
  11. Song J., Chen P., Liu W. A superhydrophobic and antibacterial surface coated on cotton fabrics by polydopamine // Fibers and Polymers. 2019. V. 20. № 7. P. 1380–1386. https://doi.org/10.1007/s12221-019-1183-z
  12. Pan S., Kota A.K., Mabry J.M., et al. Superomniphobic surfaces for effective chemical shielding // Journal of the American Chemical Society. 2013. V. 135. № 2. P. 578–581. https://doi.org/10.1021/ja310517s
  13. Zhu Y., Yang F., Guo Z. Bioinspired surfaces with special micro-structures and wettability for drag reduction: Which surface design will be a better choice? // Nanoscale. 2021. V. 13. № 6. P. 3463–3482. https://doi.org/10.1039/D0NR07664C
  14. Sarkiris P., Ellinas K., Gkiolas D. et al. Motion of drops with different viscosities on micro‐nanotextured surfaces of varying topography and wetting properties // Advanced Functional Materials. 2019. V. 29. № 35. P. 1902905. https://doi.org/10.1002/adfm.201902905
  15. Hensel R., Finn A., Helbig R. et al. Biologically inspired omniphobic surfaces by reverse imprint lithography // Advanced Materials. 2014. V. 26. № 13. P. 2029–2033. https://doi.org/10.1002/adma.201305408
  16. Bellanger H., Darmanin T., Taffin de Givenchy E. et al. Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories // Chemical Reviews. 2014. V. 114. № 5. P. 2694–2716. https://doi.org/10.1021/cr400169m
  17. Mele E., Bayer I.S., Nanni G. et al. Biomimetic approach for liquid encapsulation with nanofibrillar cloaks // Langmuir. 2014. V. 30. № 10. P. 2896–2902. https://doi.org/10.1021/la4048177
  18. Sas I., Gorga R.E., Joines J.A. et al. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning // Journal of Polymer Science Part B: Polymer Physics. 2012. V. 50. № 12. P. 824–845. https://doi.org/10.1002/polb.23070
  19. Hozumi A., McCarthy T.J. Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis // Langmuir. 2010. V. 26. № 4. P. 2567–2573. https://doi.org/10.1021/la9028518
  20. Liu K., Zhai J., Jiang L. Fabrication and characterization of superhydrophobic Sb2O3 films // Nanotechnology. 2008. V. 19. № 16. P. 165604. https://doi.org/10.1088/0957-4484/19/16/165604
  21. Qian B., Shen Z. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates // Langmuir. 2005. V. 21. № 20. P. 9007–9009. https://doi.org/10.1021/la051308c
  22. Kuzina E.A., Emelyanenko K.A., Domantovskii A.G. et al. Preparation of stable superhydrophobic coatings on a paint surface with the use of laser treatment followed by hydrophobizer deposition // Colloid Journal. 2022. V. 84. № 4. P. 445–455. https://doi.org/10.1134/S1061933X22040093
  23. Cao L., Wan Y., Zhang Q. Fabrication and mechanical durability of superhydrophobic films on aluminum // Journal of Non-Crystalline Solids. 2015. V. 410. P. 35–38. https://doi.org/10.1016/j.jnoncrysol.2014.11.035
  24. Boinovich L.B., Emelyanenko A.M., Modestov A.D. et al. Synergistic effect of superhydrophobicity and oxidized layers on corrosion resistance of aluminum alloy surface textured by nanosecond laser treatment // ACS Applied Materials & Interfaces. 2015. V. 7. № 34. P. 19500–19508. https://doi.org/10.1021/acsami.5b06217
  25. Ellinas K., Tserepi A., Gogolides E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review // Advances in Colloid and Interface Science. 2017. V. 250. P. 132–157. https://doi.org/10.1016/j.cis.2017.09.003
  26. Chengyu Wang, Cheng Piao C.L. Synthesis and characterization of superhydrophobic wood surfaces // Journal of Applied Polymer Science. 2010. V. 119. № 3. P. 1667–1672. https://doi.org/10.1002/app.32844
  27. Chen X., He Y., Fan Y. et al. Preparation of multi-functional superhydrophobic lanthanum surface on carbon steel via facile electrochemical method // Applied Physics A. 2016. V. 122. № 12. P. 1030. https://doi.org/10.1007/s00339-016-0563-0
  28. Wang H., Zhang X., Liu Z. et al. A superrobust superhydrophobic PSU composite coating with self-cleaning properties, wear resistance and corrosion resistance // RSC Advances. 2016. V. 6. № 13. P. 10930–10937. https://doi.org/10.1039/C5RA22396B
  29. Liu X., Gozubenli N., Choi B. et al. Templated fabrication of periodic arrays of metallic and silicon nanorings with complex nanostructures // Nanotechnology. 2015. V. 26. № 5. P. 055603. https://doi.org/10.1088/0957-4484/26/5/055603
  30. Stepien M., Chinga-Carrasco G., Saarinen J.J. et al. Wear resistance of nanoparticle coatings on paperboard // Wear. 2013. V. 307. № 1–2. P. 112–118. https://doi.org/10.1016/j.wear.2013.08.022
  31. Wu L., Zhang J., Li B. et al. Magnetically driven super durable superhydrophobic polyester materials for oil/water separation // Polymer Chemistry. 2014. V. 5. № 7. P. 2382. https://doi.org/10.1039/c3py01478a
  32. Xiu Y., Liu Y., Hess D.W. et al. Mechanically robust superhydrophobicity on hierarchically structured Si surfaces // Nanotechnology. 2010. V. 21. № 15. P. 155705. https://doi.org/10.1088/0957-4484/21/15/155705
  33. Jayan J.S., Jayadev D., Pillai Z.S. et al. The stability of the superhydrophobic surfaces // In: Superhydrophobic Polymer Coatings. Elsevier, 2019. P. 123–159. https://doi.org/10.1016/B978-0-12-816671-0.00007-2
  34. Cohen N., Dotan A., Dodiuk H. et al. Superhydrophobic coatings and their durability // Materials and Manufacturing Processes. 2016. V. 31. № 9. P. 1143–1155. https://doi.org/10.1080/10426914.2015.1090600
  35. Feng L., Yang Z., Zhai J. et al. Superhydrophobicity of nanostructured carbon films in a wide range of pH values // Angewandte Chemie International Edition. 2003. V. 42. № 35. P. 4217–4220. https://doi.org/10.1002/anie.200351539
  36. Zimmermann J., Artus G.R.J., Seeger S. Long term studies on the chemical stability of a superhydrophobic silicone nanofilament coating // Applied Surface Science. 2007. V. 253. № 14. P. 5972–5979. https://doi.org/10.1016/j.apsusc.2006.12.118
  37. Zeng C., Wang H., Zhou H. et al. Self-cleaning, superhydrophobic cotton fabrics with excellent washing durability, solvent resistance and chemical stability prepared from an SU-8 derived surface coating // RSC Advances. 2015. V. 5. № 75. P. 61044–61050. https://doi.org/10.1039/C5RA08040A
  38. Ishizaki T., Masuda Y., Sakamoto M. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution // Langmuir. 2011. V. 27. № 8. P. 4780–4788. https://doi.org/10.1021/la2002783
  39. Bhushan B., Jung Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction // Progress in Materials Science. 2011. V. 56. № 1. P. 1–108. https://doi.org/10.1016/j.pmatsci.2010.04.003
  40. Erbil H.Y., Demirel A.L., Avcı Y. et al. Transformation of a simple plastic into a superhydrophobic surface // Science. 2003. V. 299. № 5611. P. 1377–1380. https://doi.org/10.1126/science.1078365
  41. Shiu J.-Y., Kuo C.-W., Chen P. et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography // Chemistry of Materials. 2004. V. 16. № 4. P. 561–564. https://doi.org/10.1021/cm034696h
  42. Denman N., Emel’yanenko A.M., Serenko O.A. et al. Characterization of superhydrophobic coatings based on PDMS and MQ resin on textured surfaces // Colloid Journal. 2023. V. 85. № 4. P. 581–589. https://doi.org/10.1134/S1061933X23600483
  43. Wei Z.J., Liu W.L., Tian D. et al. Preparation of lotus-like superhydrophobic fluoropolymer films // Applied Surface Science. 2010. V. 256. № 12. P. 3972–3976. https://doi.org/10.1016/j.apsusc.2010.01.059
  44. Jisr R.M., Rmaile H.H., Schlenoff J.B. Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes // Angewandte Chemie International Edition. 2005. V. 44. № 5. P. 782–785. https://doi.org/10.1002/anie.200461645
  45. Cengiz U., Z. Avci M., Erbil H.Y. et al. Superhydrophobic terpolymer nanofibers containing perfluoroethyl alkyl methacrylate by electrospinning // Applied Surface Science. 2012. V. 258. № 15. P. 5815–5821. https://doi.org/10.1016/j.apsusc.2012.02.107
  46. Klimov V., Kolyaganova O., Bryuzgin E. et al. Effect of the composition of copolymers based on glycidyl methacrylate and fluoroalkyl methacrylates on the free energy and lyophilic properties of the modified surface // Polymers. 2022. V. 14. № 10. P. 1960. https://doi.org/10.3390/polym14101960
  47. Bryuzgin E. V., Klimov V.V., Repin S.A. et al. Aluminum surface modification with fluoroalkyl methacrylate-based copolymers to attain superhydrophobic properties // Applied Surface Science. 2017. V. 419. P. 454–459. https://doi.org/10.1016/j.apsusc.2017.04.222
  48. Bryuzgin E., Klimov V., Le M.D. et al. The Superhydrophobic state stability of coatings based on copolymers of glycidyl methacrylate and alkyl methacrylates on cotton fabric surface // Fibers and Polymers. 2020. V. 21. № 5. P. 1032–1038. https://doi.org/10.1007/s12221-020-9741-y
  49. Klimov V.V., Bryuzgin E.V., Navrotskiy A.V. et al. Superhydrophobic behavior of coatings based on fluoroalkyl methacrylate copolymers on a textured aluminum surface // Surfaces and Interfaces. 2021. V. 25. P. 101255. https://doi.org/10.1016/j.surfin.2021.101255
  50. Aveyard R., Saleem S.M. Interfacial tensions at alkane-aqueous electrolyte interfaces // Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1976. V. 72. P. 1609. https://doi.org/10.1039/f19767201609.
  51. Boinovich L.B., Emelyanenko A.M., Emelyanenko K.A. et al. Anti-icing properties of a superhydrophobic surface in a salt environment: An unexpected increase in freezing delay times for weak brine droplets // Physical Chemistry Chemical Physics. 2016. V. 18. № 4. P. 3131–3136. https://doi.org/10.1039/C5CP06988B
  52. Verho T., Bower C., Andrew P. et al. Mechanically durable superhydrophobic surfaces // Advanced Materials. 2011. V. 23. № 5. P. 673–678. https://doi.org/10.1002/adma.201003129
  53. Milionis A., Loth E., Bayer I.S. Recent advances in the mechanical durability of superhydrophobic materials // Advances in Colloid and Interface Science. 2016. V. 229. P. 57–79. https://doi.org/10.1016/j.cis.2015.12.007
  54. Yanagisawa T., Nakajima A., Sakai M. et al. Preparation and abrasion resistance of transparent super-hydrophobic coating by combining crater-like silica films with acicular boehmite powder // Materials Science and Engineering: B. 2009. V. 161. № 1–3. P. 36–39. https://doi.org/10.1016/j.mseb.2008.11.016
  55. Höhne S., Blank C., Mensch A. et al. Superhydrophobic alumina surfaces based on polymer‐stabilized oxide layers // Macromolecular Chemistry and Physics. 2009. V. 210. № 16. P. 1263–1271. https://doi.org/10.1002/macp.200900096
  56. Bayer I.S., Brown A., Steele A. et al. Transforming anaerobic adhesives into highly durable and abrasion resistant superhydrophobic organoclay nanocomposite films: A new hybrid spray adhesive for tough superhydrophobicity // Applied Physics Express. 2009. V. 2. № 12. P. 125003. https://doi.org/10.1143/APEX.2.125003
  57. Jung Y.C., Bhushan B. Mechanically durable carbon nanotube–composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag // ACS Nano. 2009. V. 3. № 12. P. 4155–4163. https://doi.org/10.1021/nn901509r
  58. Huovinen E., Hirvi J., Suvanto M. et al. Micro–micro hierarchy replacing micro–nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces // Langmuir. 2012. V. 28. № 41. P. 14747–14755. https://doi.org/10.1021/la303358h
  59. Emelyanenko A.M., Shagieva F.M., Domantovsky A.G. et al. Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion // Applied Surface Science. 2015. V. 332. P. 513–517. https://doi.org/10.1016/j.apsusc.2015.01.202
  60. García G.L., López-Ríos V., Espinosa A. et al. Cavitation resistance of epoxy-based multilayer coatings: Surface damage and crack growth kinetics during the incubation stage // Wear. 2014. V. 316. № 1–2. P. 124–132. https://doi.org/10.1016/j.wear.2014.04.007

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the wetting angles of the surface of textured aluminum modified: 1 – poly-(TEMA-co-GMA); 2 – poly-(GIMA-co-GMA); 3 – poly-(GBMA-co-GMA), from the contact time of a drop of an aggressive medium of different acidity: a) pH=2; b) pH=11; c) NaCl (C=0.5 M).

Download (354KB)
3. Fig. 2. Change in the wetting angle of the surface of textured aluminum modified: 1 – poly-(TEMA-co-GMA); 2 – poly-(GIMA-co-GMA); 3 – poly-(GBMA-co-GMA), depending on the exposure time in aggressive media of different acidity with multiple application polymer coating: pH 2 (a – 1 layer, b – 3 layers); pH 11 (b – 1 layer, d – 3 layers); NaCl (C= 0.5 M) (d – 1 layer, e – 3 layers).

Download (649KB)
4. Fig. 3. Change in the wetting angle of the CBT surface modified by: 1 – poly-(TEMA-co-GMA); 2 – poly-(GIMA-co-GMA); 3 – poly-(GBMA-co-GMA), depending on the exposure time in aggressive media of different acidity: a) pH 2; b) pH 11; c) NaCl (C=0.5 M).

Download (264KB)
5. Fig. 4. SEM image of the surface of textured aluminum modified poly-(GBMA-co-GMA) after 192 hours of contact with aggressive media: pH 2 (a – x8000; b – x60000) and pH 11 (c – x8000; d – x60000).

Download (1MB)
6. Fig. 5. Change in the wetting angle of the surface of textured aluminum modified: 1 – poly-(TEMA-co-GMA); 2 – poly-(GIMA-co-GMA); 3 – poly-(GBMA-co-GMA), from the time of ultrasonic exposure.

Download (116KB)
7. Fig. 6. Change in the wetting angle from the time of abrasive action (according to ASTM F735) on the surface of textured aluminum modified: a) poly-(TEMA-co-GMA); b) poly-(GIMA-co-GMA); c) poly-(GBMA-co-GMA), when multiple application of the polymer coating: 1 – one layer; 2 – three layers; 3 – five layers.

Download (266KB)
8. Fig. 7. SEM image of the surface of textured aluminum modified poly-(GBMA-co-GMA) after 25 minutes of abrasive action (according to ASTM F735): a) – x2000, b) – x30000.

Download (779KB)
9. Fig. 8. (a) Change in the wetting angle from the time of abrasive action (according to ASTM F735) on the surface of CBT modified: 1 – poly-(TEMA-co-GMA); 2 – poly-(GIMA-co-GMA); 3 – poly-(GBMA-co-GMA); (b) SEM is an image of the CBT surface after abrasive exposure.

Download (430KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies