Lecithin Microemulsions as Drug Carriers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper describes examples of microemulsions based on a well-known biocompatible surfactant, lecithin, and the possibilities of their use as drug carriers. The main problem encountered when developing lecithin microemulsions is the search for suitable cosurfactants. Molecules with short alkyl chains (4–5 C atoms) and relatively large polar “head,” such as short-chain aliphatic alcohols, acids, and amines are most suitable as cosurfactants for the preparation of lecithin microemulsions. Therewith, high concentrations of the cosurfactants (the cosurfactant : lecithin weight ratio usually is 1 : 1) are necessary. Most often, ethanol, n-propanol, or n-butanol are used as cosurfactants for the preparation of lecithin microemulsions in various natural and synthetic oils. To replace toxic alcohols with less toxic components, other well-known surfactants may be added to lecithin microemulsions. They are, e.g., Brij 96V (poly(ethylene glycol) oleate), Tween 80 (polyoxyethylene-20-sorbitan monooleate), Tween 20 (polyoxyethylene-20-sorbitan monolaurate). Triton X-100 (tert-octylphenyl ether of poly(ethylene glycol)) or oleic acid. Composites based on lecithin microemulsions have been described as means for local anesthesia and delivery of vitamins, as well as agents with anti-inflammatory, antifungal, anticancer, and wound healing effects. The considered examples show the promise of the study and development of lecithin microemulsions as drug carriers.

About the authors

N. M. Murashova

Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russia

Author for correspondence.
Email: namur_home@mail.ru
Россия, 125047, Москва, Миусская пл., 9

References

  1. Lawrence M.J., Rees G.D. Microemulsion-based media as novel drug delivery systems // Advanced Drug Delivery Reviews. 2012. V. 64. Supplement. P. 175–193. https://doi.org/10.1016/j.addr.2012.09.018
  2. Fanun M. Microemulsions as delivery systems // Current Opinion in Colloid and Interface Science. 2012. V. 17. № 5. P. 306–313. https://doi.org/10.1016/j.cocis.2012.06.001
  3. Callender S.P., Mathews J.A., Kobernyk K., Wettig S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery // International Journal of Pharmaceutics. 2017. V. 526. № 1–2. P. 425–442. https://doi.org/10.1016/j.ijpharm.2017.05.005
  4. Shukla T., Upmanyu N., Agrawal M. et al. Biomedical applications of microemulsion through dermal and transdermal route // Biomedicine & Pharmacotherapy. 2018. V. 108. P. 1477–1494. https://doi.org/10.1016/j.biopha.2018.10.021
  5. Alves L.P., da Silva Oliveira K., da Paixao Santos J.A. et al. A review on developments and prospects of anti-inflammatory in microemulsions // Journal of Drug Delivery Science and Technology. 2020. V. 60. P. 102008. https://doi.org/10.1016/j.jddst.2020.102008
  6. Szumała P., Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems // International Journal of Pharmaceutics. 2022. V. 615. P. 121488. https://doi.org/10.1016/j.ijpharm.2022.12148
  7. van Nieuwenhuyzen W. Production and Utilization of Natural Phospholipids // Ahmad M.U., Xu X. (Editors) Polar lipids. Biology, Chemistry and Technology. Urbana, Illinois, USA: AOCS Press. 2015. P. 245–276. https://doi.org/10.1016/B978-1-63067-044-3.50013-3
  8. Sjolund M., Rilfors L., Lindblom G. Reversed hexagonal phase formation in lecithin−alkane−water systems with different acyl chain unsaturation and alkane length // Biochemistry. 1989. V. 28. № 3. P. 1323–1329. https://doi.org/10.1021/bi00429a057
  9. Angelico R., Ceglie A., Olsson U., Palazzo G. Phase diagram and phase properties of the system lecithin−water−cyclohexane // Langmuir. 2000. V. 16. № 5. P. 2124–2132. https://doi.org/10.1021/la9909190
  10. Angelico R., Ceglie A., Colafemmina G. et al. Phase behavior of the lecithin/water/isooctane and lecithin/water/decane systems // Langmuir. 2004. V. 20. № 3. P. 619–631. https://doi.org/10.1021/la035603d
  11. Щипунов Ю.А. Самоорганизующиеся структуры лецитина // Успехи химии. 1997. Т. 66. № 4. С. 328–352.
  12. Kumar V.V., Kumar C., Raghunathan P. Studies on lecithin reverse micelles: Optical birefringence, viscosity, light scattering, electrical conductivity and electron microscopy // Journal of Colloid and Inteface Science. 1984. V. 99. № 2. P. 315–323.
  13. Scartazzini R., Luisi P.L. Organogels from lecithins // Journal of Physical Chemistry. 1988. V. 92. № 3. P. 829–833. https://doi.org/10.1021/j100314a047
  14. Мурашова Н.М., Юртов Е.В. Лецитиновые органогели как перспективные функциональные наноматериалы // Российские нанотехнологии. 2015. Т. 10. № 7–8. С. 5–14.
  15. Shinoda K., Carlsson A., Lindman B. On the importance of hydroxyl groups in the polar head-group of nonionic surfactants and membrane lipids // Advances in Colloid and Interface Science. 1996. V. 64. P. 253–271. https://doi.org/10.1016/0001-8686(95)00287-1
  16. Shinoda K., Araki M., Sadaghiani A. et al. Lecithin-based microemulsions: Phase behavior and microstructure // Journal of Physical Chemistry. 1991. V. 95. № 2. P. 989–993. https://doi.org/10.1021/j100155a091
  17. Aboofazeli R., Lawrence M.J. Investigations into the formation and characterization of phospholipid microemulsions. I. Pseudo-ternary phase diagrams of systems containing water−lecithin−alcohol−isopropyl myristate // International Journal of Pharmaceutics. 1993. V. 93. № 1–3. P. 161–175. https://doi.org/10.1016/0378-5173(93)90174-E
  18. Aboofazeli R., Lawrence M.J. Investigations into the formation and characterization of phospholipid microemulsions. II. Pseudo-ternary phase diagrams of systems containing water−lecithin−isopropyl myristate and alcohol: Influence of purity of lecithin // International Journal of Pharmaceutics. 1994. V. 106. № 1. P. 51–61. https://doi.org/10.1016/0378-5173(94)90275-5
  19. Aboofazeli R., Lawrence C.B., Wicks S.R., Lawrence M.J. Investigations into the formation and characterization of phospholipid microemulsions. III. Pseudo-ternary phase diagrams of systems containing water-lecithin-isopropyl myristate and either an alkanoic acid, amine, alkanediol, polyethylene glycol alkyl ester or alcohol as cosurfactant // International Journal of Pharmaceutics. 1994. V. 111. № 1. P. 63–72. https://doi.org/10.1016/0378-5173(94)90402-2
  20. Aboofazeli R., Patel N., Thomas M., Lawrence M.J. Investigations into the formation and characterization of phospholipid microemulsions. IV. Pseudo-ternary phase diagrams of systems containing water-lecithin-alcohol and oil: The influence of oil // International Journal of Pharmaceutics. 1995. V. 125. № 1. P. 107–116. https://doi.org/10.1016/0378-5173(95)00125-3
  21. Kahlweit M., Busse G., Faulhaber B. Preparing microemulsions with lecithins // Langmuir. 1995. V. 11. № 5. P. 1576–1583. https://doi.org/10.1021/la00005a027
  22. Schurtenberger P., Peng Q., Leser M.E., Luizi P.-L. Structure and phase behavior of lecithin-based microemulsions: A study of the chain-length dependence // Journal of Colloid and Interface Science. 1993. V. 156. № 1. P. 43–51. https://doi.org/10.1006/jcis.1993.1078
  23. Avramiotis S., Bekiari V., Lianos P., Xenakis A. Structural and dynamic properties of lecithin–alcohol based w/o microemulsions: A luminescence quenching study // Journal of Colloid and Interface Science. 1997. V. 194. № 2. P. 326–331. https://doi.org/10.1006/jcis.1997.5135
  24. Reis M.F.T., Bonomo R.C.F., de Souza A.O. et al. Calorimetric studies of microemulsion systems with lecithin, isooctane and butanol // Food Research International. 2012. V. 49. № 2. P. 672–676. https://doi.org/10.1016/j.foodres.2012.08.014
  25. Papadimitrou V., Pispas S., Syriou S. et al. Biocompatble microemulsions based on limonene: Formulation, structure and application // Langmuir. 2008. V. 24. № 7. P. 3380–3386. https://doi.org/10.1021/la703682c
  26. Leser M.E., van Evert W.C., Agterof W.G.M. Phase behaviour of lecithin–alcohol–triacylglycerol mixtures // Colloids and Surfaces A. Physicochemical and Engineering Aspects. 1996. V. 116. № 3. P. 293–308. https://doi.org/10.1016/0927-7757(96)03628-X
  27. Mouri A., Diat O., Lerner D.A. et al. Water solubilization capacity of pharmaceutical microemulsions based on Peceol, lecithin and ethanol // International Journal of Pharmaceutics. 2014. V. 475. № 1–2. P. 324–334. https://doi.org/10.1016/j.ijpharm.2014.07.018
  28. Xu M., Yu Q., Zhao Q. et al. Development and in vitro-in vivo evaluation of water-in-oil microemulsion formulation for the oral delivery of troxerutin // Drug Development and Industrial Pharmacy. 2016. V. 42. № 2. P. 280–287. https://doi.org/10.3109/03639045.2015.1047849
  29. Abbasi S., Radi M. Food grade microemulsion systems: Canola oil/lecithin:n-propanol/ water // Food Chemistry. 2016. V. 194. P. 972– 979. https://doi.org/10.1016/j.foodchem.2015.08.078
  30. Jalali-Jivan M., Abbasi S. Novel approach for lutein extraction: Food grade microemulsion containing soy lecithin and sunflower oil // Innovative Food Science and Emerging Technologies. 2020. V. 66. P. 102505. https://doi.org/10.1016/j.ifset.2020.102505
  31. Amiri-Rigi A., Abbasi S. Extraction of lycopene using a lecithin-based olive oil microemulsion // Food Chemistry. 2019. V. 272. P. 568–573. https://doi.org/10.1016/j.foodchem.2018.08.080
  32. Trotta M., Cavalli R., Ugazio E., Gasco M.R. Phase behaviour of microemulsion systems containing lecithin and lysolecithin as surfactants // International Journal of Pharmaceutics. 1996. V. 143. № 1. P. 67–73. https://doi.org/10.1016/S0378-5173(96)04688-1
  33. Trotta M., Pattarino F., Grosa G. Formation of lecithin-based microemulsions containing n-alkanol phosphocholines // International Journal of Pharmaceutics. 1998. V. 174. № 1–2. P. 253–259. https://doi.org/10.1016/S0378-5173(98)00273-7
  34. Graf A., Ablinger E., Peters S. et al. Microemulsions containing lecithin and sugar-based surfactants: Nanoparticle templates for delivery of proteins and peptides // International Journal of Pharmaceutics. 2008. V. 350. № 1–2. P. 351–360. https://doi.org/10.1016/j.ijpharm.2007.08.053
  35. Brime B., Moreno M.A., Frutos G. et al. Amphotericin B in oil−water lecithin-based microemulsions: Formulations and toxicity evaluation // Journal of Pharmaceutical Sciences. 2002. V. 91. № 4. P. 1178–1185. https://doi.org/10.1002/jps.10065
  36. Moreno M.A., Ballesteros M.P., Frutos P. Lecithin-based oil-in-water microemulsions for parenteral use; pseudoternary phase diagrams, characterization and toxicity studies // Journal of Pharmaceutical Sciences. 2003. V. 92. № 7. P. 1428–1437. https://doi.org/10.1002/jps.10412
  37. Pestana K.C., Formariz T.P., Franzini C.M. et al. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B // Colloids and Surfaces B: Biointerfaces. 2008. V. 66. № 2. P. 253–259. https://doi.org/10.1016/j.colsurfb.2008.06.016
  38. Lin C.-C., Lin H.-Y., Chi M.-H. et al. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line // Food Chemistry. 2014. V. 154. P. 282–290. https://doi.org/10.1016/j.foodchem.2014.01.012
  39. Nguyen T.T.L., Edelen A., Neighbors B., Sabatini D.A. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: Formulation and potential applications // Journal of Colloid and Interface Science. 2010. V. 348. № 2. P. 498–504. https://doi.org/10.1016/j.jcis.2010.04.053
  40. Das A., Mitra R.K. Formulation and characterization of a biocompatible microemulsion composed of mixed surfactants: lecithin and Triton X-100 // Colloid and Polymer Science. 2014. V. 292. № 3. P. 635–644. https://doi.org/10.1007/s00396-013-3110-y
  41. Yuan J.S., Acosta E.J. Extended release of lidocaine from linker-based lecithin microemulsions // International Journal of Pharmaceutics. 2009. V. 368. № 1–2. P. 63–71. https://doi.org/10.1016/j.ijpharm.2008.09.063
  42. Acosta E., Chung O., Xuan X.Y. Lecithin-linker microemulsions in transdermal delivery // Journal of Drug Delivery Science and Technology. 2011. V. 21. № 1. P. 77–87. https://doi.org/10.1016/S1773-2247(11)50007-3
  43. Nouraei M., Acosta E.J. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions // Journal of Colloid and Interface Science. 2017. V. 495. P. 178–190. https://doi.org/10.1016/j.jcis.2017.01.114
  44. Murashova N.M., Prokopova L.A., Trofimova E.S., Yurtov E.V. Effects of oleic acid and phospholipids on the formation of lecithin organogel and microemulsion // Journal of Surfactants and Detergents. 2018. V. 21. № 5. P. 635–645. https://doi.org/10.1002/jsde.12170
  45. Мурашова Н.М. Самоорганизующиеся структуры ди-(2-этилгексил)фосфата натрия и лецитина в системах “вода–масло–ПАВ” и функциональные наноматериалы на их основе. Диссертация на соискание ученой степени доктора химических наук. М.: РХТУ им. Д.И. Менделеева, 2022. 380 с.
  46. Мурашова Н.М., Трофимова Е.С., Костюченко М.Ю. и др. Микроэмульсии и лиотропные жидкие кристаллы лецитина как системы для трансдермальной доставки лекарственных веществ // Российские нанотехнологии. 2019. Т. 14. № 1–2. С. 69–75.
  47. Мурашова Н.М., Нгуен Х.Т. Микроэмульсии лецитина с маслом гака и эфирным маслом куркумы // Коллоидный журнал. 2023. Т. 85. № 2. С. 191–199.
  48. Changez M., Varshney M., Chander J., Dinda A.M. Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: In vitro // Colloids and Surfaces B: Biointerfaces. 2006. V. 50. № 1. P. 18–25. https://doi.org/10.1016/j.colsurfb.2006.03.018
  49. Changez M., Chander J., Dinda A.M. Transdermal permeation of tetracaine hydrochloride by lecithin microemulsion: In vivo // Colloids and Surfaces B: Biointerfaces. 2006. V. 48. № 1. P. 58–66. https://doi.org/10.1016/j.colsurfb.2006.01.007
  50. Paolino D., Ventura C.A., Nistico S. et al. Lecithin microemulsions for the topical administration of ketoprofen: Percutaneous adsorption through human skin and in vivo human skin tolerability // International Journal of Pharmaceutics. 2002. V. 244. № 1–2. P. 21–31. https://doi.org/10.1016/s0378-5173(02)00295-8
  51. Savic V., Todosijevic M., Ilic T. et al. Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances // International Journal of Pharmaceutics. 2017. V. 529. № 1–2. P. 491–505. https://doi.org/10.1016/j.ijpharm.2017.07.036
  52. Basov A., Fedulova L., Vasilevskaya E. et al. Sus scrofa immune tissues as a new source of bioactive substances for skin wound healing // Saudi Journal of Biological Sciences. 2021. V. 28. № 3. P. 1826–1834. https://doi.org/10.1016/j.sjbs.2020.12.028
  53. Yuan J.S., Ansari M., Samaan M., Acosta E.M. Linker-based lecithin microemulsions for transdermal delivery of lidocaine // International Journal of Pharmaceutics. 2008. V. 349. № 1– 2. P. 130–143. https://doi.org/10.1016/j.ijpharm.2007.07.047
  54. Brime B., Molero G., Frutos P., Frutos G. Comparative therapeutic efficacy of a novel lyophilized ampho-tericin B lecithin-based oil–water microemulsion and deoxycholate-amphotericin B in immunocompetent and neutropenic mice infected with Candida albicans // European Journal of Pharmaceutical Sciences. 2004. V. 22. № 5. P. 451–458. https://doi.org/10.1016/j.ejps.2004.04.008

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (187KB)
3.

Download (175KB)
4.

Download (41KB)
5.

Download (78KB)
6.

Download (232KB)
7.

Download (1MB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies