NATURAL ELECTRORHEOLOGICAL FLUIDS BASED ON CELLULOSE PARTICLES IN OLIVE OIL: THE FILLER SIZE EFFECT

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The rheological behavior of 1 wt % suspensions of micro- and nanocellulose in olive oil is studied at various electric field strengths up to 7 kV/mm. The particle morphology is evaluated by optical and electron microscopy. Under an electric field, a contrast transition from a simply viscous behavior of fluids to a visco-elastic one is observed, while the suspensions show yield stress and storage modulus. A higher electrorheological response of suspensions filled with nanocellulose compared to microcellulose has been established. Based on the dependences of the static yield stress on the electric field strength, an analysis of the mechanism of the electrorheological effect has been provided. The use of completely natural components has shown promise of developing novel, environmentally friendly “smart” materials.

About the authors

N. M. KUZNETSOV

National Research Center “Kurchatov Institute”, Moscow, Russia

Email: kyz993@yandex.ru
Россия, 123182, Москва, пл. Академика Курчатова, д. 1

V. V. KOVALEVA

National Research Center “Kurchatov Institute”, Moscow, Russia

Email: kyz993@yandex.ru
Россия, 123182, Москва, пл. Академика Курчатова, д. 1

A. YU. VDOVICHENKO

National Research Center “Kurchatov Institute”, Moscow, Russia;
Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia

Email: kyz993@yandex.ru
Россия, 123182, Москва, пл. Академика Курчатова, д. 1; Россия, 117393, Москва, Профсоюзная ул., д. 70

S. N. CHVALUN

National Research Center “Kurchatov Institute”, Moscow, Russia;
Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: kyz993@yandex.ru
Россия, 123182, Москва, пл. Академика Курчатова, д. 1; Россия, 117393, Москва, Профсоюзная ул., д. 70

References

  1. Warner J.C., Cannon A.S., Dye K.M. Green chemistry // Environmental Impact Assessment Review. 2004. V. 24. № 7–8. P. 775–799. https://doi.org/10.1016/j.eiar.2004.06.006
  2. Anastas P., Eghbali N. Green chemistry: Principles and practice // Chemical Society Reviews. 2010. V. 39. № 1. P. 301–312. https://doi.org/10.1039/b918763b
  3. Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and the Cognitive Science / Eds. Roco M.C., Bainbridge W.S. Arlington, Virginia, 2002. 482 p.
  4. Ковальчук М.В., Нарайкин О.С., Яцишина Е.Б. Природоподобные технологии: новые возможности и новые вызовы // Вестник Российской академии наук. 2019. Т. 89. № 5. P. 455–465. https://doi.org/10.31857/S0869-5873895455-465
  5. Meng H., Li G. A review of stimuli-responsive shape memory polymer composites // Polymer. 2013. V. 54. № 9. P. 2199–2221. https://doi.org/10.1016/j.polymer.2013.02.023
  6. Musarurwa H., Tavengwa N.T. Stimuli-responsive polymers and their applications in separation science // Reactive and Functional Polymers. 2022. V. 175. P. 105282. https://doi.org/10.1016/j.reactfunctpolym.2022.105282
  7. Безсуднов И.В., Хмельницкая А.Г., Калинина А.А. и др. Материалы и конструкции диэлектрических актюаторов // Успехи химии. 2023. Т. 92. RCR5070. https://doi.org/10.57634/RCR5070
  8. Зарипов А.К. Упругие свойства магнитных жидкостей // Коллоидный журнал. 2021. Т. 83. № 6. С. 634–643. https://doi.org/10.31857/S0023291221060185
  9. Русаков В.В., Райхер Ю.Л. Нелинейная восприимчивость вязкоупругого ферроколлоида: влияние поля смещения // Коллоидный журнал. 2022. Т. 84. № 6. С. 780–792. https://doi.org/10.31857/S002329122270001X
  10. Murashkevich A.N., Alisienok O.A., Zharskii I.M. et al. Modified titania and titanium-containing composites as fillers exhibiting an electrorheological effect // Inorganic Materials. 2013. V. 49. № 2. P. 165–171. https://doi.org/10.1134/S0020168513020209
  11. Агафонов А.В., Краев А.С., Герасимова Т.В. и др. Свойства электрореологических жидкостей на основе нанокристаллического диоксида церия // Журнал неорганической химии. 2017. Т. 62. № 5. С. 627–635. https://doi.org/10.7868/S0044457X17050026
  12. Metayer C., Sterligov V.A., Meunier A. et al. Field induced structures and phase separation in electrorheological and magnetorheological colloidal suspensions // Journal of Physics-Condensed Matter. 2004. V. 16. № 38. P. S3975–S3986. https://doi.org/10.1088/0953-8984/16/38/015
  13. Park D.E., Chae H.S., Choi H.J. et al. Magnetite-polypyrrole core-shell structured microspheres and their dual stimuli-response under electric and magnetic fields // Journal of Materials Chemistry C. 2015. V. 3. № 13. P. 3150–3158. https://doi.org/10.1039/c5tc00007f
  14. Kim H.M., Jeong J.Y., Kang S.H. et al. Dual electrorheological and magnetorheological behaviors of poly(N-methyl aniline) coated ZnFe2O4 composite particles // Materials. 2022. V. 15. P. 2677. https://doi.org/10.3390/ma15072677
  15. MR Fluid Brake [Electronic resource] // Akebono Brake Industry Co., Ltd. URL: https://www.akebono-brake.com/english/product_technology/technology/ next_generation.html (accessed on March 15, 2023).
  16. Kuznetsov N.M., Kovaleva V.V., Belousov S.I. et al. Electrorheological fluids: From historical retrospective to recent trends // Materials Today Chemistry. 2022. V. 26. P. 101066. https://doi.org/10.1016/j.mtchem.2022.101066
  17. Kuznetsov N.M., Bakirov A.V., Banin E.P. et al. In situ X-ray analysis of montmorillonite suspensions in polydimethylsiloxane: Orientation in shear and electric field // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 622. P. 126663. https://doi.org/10.1016/j.colsurfa.2021.126663
  18. Kuznetsov N.M., Vdovichenko A.Y., Bakirov A.V. et al. The size effect of faceted detonation nanodiamond particles on electrorheological behavior of suspensions in mineral oil // Diamond and Related Materials. 2022. V. 125. P. 108967. https://doi.org/10.1016/j.diamond.2022.108967
  19. Кузнецов Н.М., Ковалева В.В., Загоскин Ю.Д. и др. Особенности применения композиционных пористых полимерных частиц в качестве наполнителей электрореологических жидкостей // Российские нанотехнологии. 2021. Т. 16. № 1. С. 125–132. https://doi.org/10.1134/S199272232101012X
  20. Ma N., Dong X. Effect of carrier liquid on electrorheological performance and stability of oxalate group-modified TiO2 suspensions // Journal of Wuhan University of Technology-Mater. Sci. Ed. 2017. V. 32. № 4. P. 854–861. https://doi.org/10.1007/s11595-017-1679-6
  21. Sokolov M.A., Kuznetsov N.M., Belousov S.I. et al. Effect of the dispersion medium viscosity on the electrorheological behavior of halloysite suspensions in polydimethylsiloxane // ChemChemTech. 2021. V. 64. № 11. P. 79–85. https://doi.org/10.6060/ivkkt.20216411.6402
  22. Korobko E.V., Novikova Z.A. Features of the mechanisms of conductivity of the electrorheological fluids with double doped TiO2 particles under external temperature effects // Frontiers in Materials. 2019. V. 6. P. 1–9. https://doi.org/10.3389/fmats.2019.00132
  23. Li X., Yan G., Wang J. et al. Effect of a temperature threshold on the electrorheological performance of ionic liquid crystal polyanilines // Journal of Molecular Liquids. 2021. V. 326. P. 115299. https://doi.org/10.1016/j.molliq.2021.115299
  24. Ковалева В.В., Кузнецов Н.М., Вдовиченко А.Ю. и др. Влияние температуры на электрореологическое поведение частиц пористого хитозана в полидиметилсилоксане // Доклады Российской академии наук. Химия, науки о материалах. 2022. Т. 502. С. 54–59. https://doi.org/10.31857/S2686953522010071
  25. Wen W., Huang X., Yang S. et al. The giant electrorheological effect in suspensions of nanoparticles // Nature Materials. 2003. V. 2. № 11. P. 727–730. https://doi.org/10.1038/nmat993
  26. Shen R., Wang X., Lu Y. et al. Polar-molecule-dominated electrorheological fluids featuring high yield stresses // Advanced Materials. 2009. V. 21. № 45. P. 4631–4635. https://doi.org/10.1002/adma.200901062
  27. Li J., Gong X., Chen S. et al. Giant electrorheological fluid comprising nanoparticles: Carbon nanotube composite // Journal of Applied Physics. 2010. V. 107. № 9. P. 093507. https://doi.org/10.1063/1.3407503
  28. Lee S., Lee J., Hwang S.H. et al. Enhanced electroresponsive performance of double-shell SiO2/TiO2 hollow nanoparticles // ACS Nano. 2015. V. 9. № 5. P. 4939–4949. https://doi.org/10.1021/nn5068495
  29. Lee S., Yoon C.-M., Hong J.-Y. et al. Enhanced electrorheological performance of a graphene oxide-wrapped silica rod with a high aspect ratio // Journal of Materials Chemistry C. 2014. V. 2. № 30. P. 6010–6016. https://doi.org/10.1039/C4TC00635F
  30. Noh J., Yoon C.M., Jang J. Enhanced electrorheological activity of polyaniline coated mesoporous silica with high aspect ratio // Journal of Colloid and Interface Science. 2016. V. 470. P. 237–244. https://doi.org/10.1016/j.jcis.2016.02.061
  31. Agafonov A.V., Kraev A.S., Teplonogova M.A. et al. First MnO2-based electrorheological fluids: High response at low filler concentration // Rheologica Acta. 2019. V. 58. № 11–12. P. 719–728. https://doi.org/10.1007/s00397-019-01175-7
  32. Oh S.Y., Oh M.K., Kang T.J. Characterization and electrorheological response of silica/titania-coated MWNTs synthesized by sol−gel process // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013. V. 436. P. 354–362. https://doi.org/10.1016/j.colsurfa.2013.06.037
  33. Kuznetsov N.M., Belousov S.I., Kamyshinsky R.A. et al. Detonation nanodiamonds dispersed in polydimethylsiloxane as a novel electrorheological fluid: Effect of nanodiamonds surface // Carbon. 2021. V. 174. P. 138–147. https://doi.org/10.1016/j.carbon.2020.12.014
  34. Kuznetsov N.M., Zagoskin Y.D., Vdovichenko A.Y. et al. Enhanced electrorheological activity of porous chitosan particles // Carbohydrate Polymers. 2021. V. 256. P. 117530. https://doi.org/10.1016/j.carbpol.2020.117530
  35. Choi K., Gao C.Y., Nam J. Do et al. Cellulose-based smart fluids under applied electric fields // Materials. 2017. V. 10. № 9. P. 1060–1081. https://doi.org/10.3390/ma10091060
  36. Kovaleva V.V., Kuznetsov N.M., Istomina A.P. et al. Low-filled suspensions of α-chitin nanorods for electrorheological applications // Carbohydrate Polymers. 2022. V. 277. P. 118792. https://doi.org/10.1016/j.carbpol.2021.118792
  37. Богданова О.И., Чвалун С.Н. Природные и синтетические нанокомпозиты на основе полисахаридов // Высокомолекулярные соединения. Серия А. 2016. Т. 58. № 5. С. 407–438. https://doi.org/10.1134/S0965545X16050047
  38. Богданова О.И., Истомина А.П., Чвалун С.Н. Композиты на основе наночастиц хитина и биоразлагаемых полимеров для медицинского применения: получение и свойства // Российские нанотехнологии. 2021. Т. 16. № 1. С. 50–79. https://doi.org/10.1134/S1992722321010039
  39. Davies J.L., Blagbrough I.S., Staniforth J.N. Electrorheological behaviour at low applied electric fields of microcrystalline cellulose in BP oils // Chemical Communications. 1998. V. 19. P. 2157–2158. https://doi.org/10.1039/a806533k
  40. Sung J.H., Choi H.J., Jhon M.S. Electrorheological response of biocompatible chitosan particles in corn oil // Materials Chemistry and Physics. 2003. V. 77. № 3. P. 778–783. https://doi.org/10.1016/S0254-0584(02)00167-0
  41. Hong C.H., Sung J.H., Choi H.J. Effects of medium oil on electroresponsive characteristics of chitosan suspensions // Colloid and Polymer Science. 2009. V. 287. № 5. P. 583–589. https://doi.org/10.1007/s00396-009-2006-3
  42. Yavuz M., Tilki T., Karabacak C. et al. Electrorheological behavior of biodegradable modified corn starch/corn oil suspensions // Carbohydrate Polymers. 2010. V. 79. № 2. P. 318–324. https://doi.org/10.1016/j.carbpol.2009.08.008
  43. Kuznetsov N.M., Zagoskin Y.D., Bakirov A.V. et al. Is chitosan the promising candidate for filler in nature-friendly electrorheological fluids? // ACS Sustainable Chemistry & Engineering. 2021. V. 9. P. 3802–3810. https://doi.org/10.1021/acssuschemeng.0c08793
  44. García-Morales M., Fernández-Silva S.D., Roman C. et al. Preliminary insights into electro-sensitive ecolubricants: A comparative analysis based on nanocelluloses and nanosilicates in castor oil // Processes. 2020. V. 8. № 9. P. 1060. https://doi.org/10.3390/pr8091060
  45. Zarubina A.N., Ivankin A.N., Kuleznev A.S. et al. Cellulose and nano cellulose. Review // Forestry Bulletin. 2019. № 135. P. 116–125. https://doi.org/10.18698/2542-1468-2019-5-116-125
  46. Zhang W.L., Deng L., Liu J. et al. Unveiling the critical role of surface oxidation of electroresponsive behaviors in two-dimensional Ti3C2Tx MXenes // Journal of Physical Chemistry C. 2019. V. 123. № 9. P. 5479–5487. https://doi.org/10.1021/acs.jpcc.8b11525
  47. Jang H.S., Kwon S.H., Lee J.H. et al. Facile fabrication of core-shell typed silica/poly(diphenylamine) composite microparticles and their electro-response // Polymer. 2019. V. 182. P. 121851. https://doi.org/10.1016/j.polymer.2019.121851
  48. Ikazaki F., Kawai A., Uchida K. et al. Mechanisms of electrorheology: The effect of the dielectric property // Journal of Physics D: Applied Physics. 1998. V. 31. № 3. P. 336–347. https://doi.org/10.1088/0022-3727/31/3/014
  49. Goodacre R., Vaidyanathan S., Bianchi G., Kell D.B. Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils //Analyst. 2002. V. 127. № 11. P. 1457–1462. https://doi.org/10.1039/B206037J

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (421KB)
3.

Download (3MB)
4.

Download (378KB)
5.

Download (418KB)
6.

Download (77KB)
7.

Download (114KB)
8.

Download (734KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies