DEVELOPMENT OF CORE–SHELL STRUCTURES CAPABLE OF PH-RESPONSIVE RELEASE OF ENCAPSULATED COMPOUNDS
- Authors: KUZNETSOV A.O.1, VLASICHEVA Y.N.1, LENGERT E.V.2, ERMAKOV A.V.2
-
Affiliations:
- Mendeleev University of Chemical Technology of Russia, Moscow, Russia.
- Sechenov First Moscow State Medical University (Sechenov University), Institute of Molecular Theranostics, Moscow, Russia
- Issue: Vol 85, No 3 (2023)
- Pages: 328-338
- Section: Articles
- Submitted: 16.10.2023
- Published: 01.05.2023
- URL: https://journals.rcsi.science/0023-2912/article/view/137231
- DOI: https://doi.org/10.31857/S0023291223600207
- EDN: https://elibrary.ru/ZQDJUG
- ID: 137231
Cite item
Abstract
Currently, the development of drug delivery systems is an important trend in modern biomedicine. During the last five years, a tendency is observed to complicate the developed carriers with the production of complex multicomponent carriers in order to improve the targeting and selectivity of their action. For this purpose, various properties characteristic for particular sites of a body are used, thus making it possible to specify the action of the carriers. One of the used factors is the medium pH, which is strictly regulated by an organism and is constant in a particular site of it. In this work, we develop an approach to the formation of complex core–shell particles based on mesoporous calcium carbonate particles and AMS-6 silica particles. The loading capacity of the obtained complex particles with respect to TRITC–BSA model dye and the kinetics of its release from them are studied. The carriers obtained in the work are promising to be used as drug carriers with pH-dependent release kinetics of encapsulated drugs.
About the authors
A. O. KUZNETSOV
Mendeleev University of Chemical Technology of Russia, Moscow, Russia.
Email: ermakov_a_v_2@staff.sechenov.ru
Россия, 125047, Москва,
Миусская площадь, 9, стр. 6
YU. N. VLASICHEVA
Mendeleev University of Chemical Technology of Russia, Moscow, Russia.
Email: ermakov_a_v_2@staff.sechenov.ru
Россия, 125047, Москва,
Миусская площадь, 9, стр. 6
E. V. LENGERT
Sechenov First Moscow State Medical University (Sechenov University), Institute of Molecular Theranostics, Moscow, Russia
Email: ermakov_a_v_2@staff.sechenov.ru
Россия, 119991, Москва,
ул. Трубецкая, д. 8, стр. 2
A. V. ERMAKOV
Sechenov First Moscow State Medical University (Sechenov University), Institute of Molecular Theranostics, Moscow, Russia
Author for correspondence.
Email: ermakov_a_v_2@staff.sechenov.ru
Россия, 119991, Москва,
ул. Трубецкая, д. 8, стр. 2
References
- Chowdhury N.K., Deepika, Choudhury R., Sonawane G.A., Mavinamar S., Lyu X., Pandey R.P., Chang C.-M. Nanoparticles as an effective drug delivery system in COVID-19 // Biomedicine & Pharmacotherapy. 2021. V. 143. P. 112162. https://doi.org/10.1016/j.biopha.2021.112162
- Maleki Dizaj S., Sharifi S., Ahmadian E., Eftekhari A., Adibkia K., Lotfipour F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system // Expert Opinion on Drug Delivery. 2019. V. 16. № 4. P. 331–345. https://doi.org/10.1080/17425247.2019.1587408
- Wani S.U.D., Ali M., Masoodi M.H., Khan N.A., Zargar M.I., Hassan R., Mir S.A., Gautam S.P., Gangadharappa H.V., M. Osmani R.A. A review on nanoparticles categorization, characterization and applications in drug delivery systems // Vibrational Spectroscopy. 2022. V. 121. P. 103407. https://doi.org/10.1016/j.vibspec.2022.103407
- Ghosh S., Jayaram P., Kabekkodu S.P., Satyamoorthy K. Targeted drug delivery in cervical cancer: Current perspectives // European Journal of Pharmacology. 2022. V. 917. P. 174751. https://doi.org/10.1016/j.ejphar.2022.174751
- Liu R., Luo C., Pang Z., Zhang J., Ruan S., Wu M., Wang L., Sun T., Li N., Han L., Shi J., Huang Y., Guo W., Peng S., Zhou W., Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment // Chinese Chemical Letters. 2023. V. 34. № 2. P. 107518. https://doi.org/10.1016/j.cclet.2022.05.032
- Yawalkar A.N., Pawar M.A., Vavia P.R. Microspheres for targeted drug delivery − A review on recent applications // Journal of Drug Delivery Science and Technology. 2022. V. 75. P. 103659. https://doi.org/10.1016/j.jddst.2022.103659
- Shah A., Aftab S., Nisar J., Ashiq M.N., Iftikhar F.J. Nanocarriers for targeted drug delivery // Journal of Drug Delivery Science and Technology. 2021. V. 62. P. 102426. https://doi.org/10.1016/j.jddst.2021.102426
- Pushpalatha R., Selvamuthukumar S., Kilimozhi D. Nanocarrier mediated combination drug delivery for chemotherapy – A review // Journal of Drug Delivery Science and Technology. 2017. V. 39. P. 362–371. https://doi.org/10.1016/j.jddst.2017.04.019
- Croissant J.G., Fatieiev Y., Khashab N.M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles // Advanced Materials. 2017. V. 29. № 9. P. 1604634. https://doi.org/10.1002/adma.201604634
- Trofimov A., Ivanova A., Zyuzin M., Timin A. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives // Pharmaceutics. 2018. V. 10. № 4. P. 167. https://doi.org/10.3390/pharmaceutics10040167
- Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours // Nature Reviews Materials. 2016. V. 1. № 5. P. 16014. https://doi.org/10.1038/natrevmats.2016.14
- Nandwana V., De M., Chu S., Jaiswal M., Rotz M., Meade T.J., Dravid V.P. Theranostic magnetic nanostructures (MNS) for cancer. In: Mirkin C., Meade T., Petrosko S., Stegh A. (Eds). Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham, 2015. P. 51–83.https://doi.org/10.1007/978-3-319-16555-4_3
- Kolar S., Jurić S., Marijan M., Vlahoviček-Kahlina K., Vinceković M. Applicability of alginate-based composite microspheres loaded with aqueous extract of Stevia rebaudiana Bertoni leaves in food and pharmaceutical products // Food Bioscience. 2022. V. 50. P. 101970. https://doi.org/10.1016/j.fbio.2022.101970
- Yang M., Abdalkarim S.Y.H., Yu H.-Y., Asad R.A.M., Ge D., Zhou Y. Thermo-sensitive composite microspheres incorporating cellulose nanocrystals for regulated drug release kinetics // Carbohydrate Polymers. 2023. V. 301. P. 120350. https://doi.org/10.1016/j.carbpol.2022.120350
- Bil M., Mrówka P., Kołbuk D., Święszkowski W. Multifunctional composite combining chitosan microspheres for drug delivery embedded in shape memory polyester-urethane matrix // Composites Science and Technology. 2021. V. 201. P. 108481. https://doi.org/10.1016/j.compscitech.2020.108481
- Ojagh S.M.A., Vahabzadeh F., Karimi A. Synthesis and characterization of bacterial cellulose-based composites for drug delivery // Carbohydrate Polymers. 2021. V. 273. P. 118587. https://doi.org/10.1016/j.carbpol.2021.118587
- Reza Soltani E., Ahmad Panahi H., Moniri E., Torabi Fard N., Raeisi I., Beik J., Yousefi Siavoshani A. Construction of a pH/temperature dual-responsive drug delivery platform based on exfoliated MoS2 nanosheets for effective delivery of doxorubicin: Parametric optimization via central composite design // Materials Chemistry and Physics. 2023. V. 295. P. 127159. https://doi.org/10.1016/j.matchemphys.2022.127159
- Lengert E.V., Koltsov S.I., Li J., Ermakov A.V., Parakhonskiy B.V., Skorb E.V., Skirtach A.G. Nanoparticles in polyelectrolyte multilayer layer-by-layer (LbL) films and capsules—key enabling components of hybrid coatings // Coatings. 2020. V. 10. № 11. P. 1131. https://doi.org/10.3390/coatings10111131
- Khan A.N., Ermakov A., Sukhorukov G., Hao Y. Radio frequency controlled wireless drug delivery devices // Applied Physics Reviews. 2019. V. 6. № 4. https://doi.org/10.1063/1.5099128
- Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery // Saudi Pharmaceutical Journal. 2020. V. 28. № 3. P. 255–265. https://doi.org/10.1016/j.jsps.2020.01.004
- Abdella S., Abid F., Youssef S.H., Kim S., Afinjuomo F., Malinga C., Song Y., Garg S. pH and its applications in targeted drug delivery // Drug Discovery Today. 2023. V. 28. № 1. P. 103414. https://doi.org/10.1016/j.drudis.2022.103414
- Tang H., Zhao W., Yu J., Li Y., Zhao C. Recent development of pH-responsive polymers for cancer nanomedicine // Molecules. 2018. V. 24. № 1. P. 4. https://doi.org/10.3390/molecules24010004
- Kolawole O.M., Cook M.T. In situ gelling drug delivery systems for topical drug delivery // European Journal of Pharmaceutics and Biopharmaceutics. 2023. V. 184. P. 36–49. https://doi.org/10.1016/j.ejpb.2023.01.007
- Al Ragib A., Chakma R., Dewan K., Islam T., Kormoker T., Idris A.M. Current advanced drug delivery systems: Challenges and potentialities // Journal of Drug Delivery Science and Technology. 2022. V. 76. P. 103727. https://doi.org/10.1016/j.jddst.2022.103727
- Shaikh M.A.J., Gupta G., Afzal O., Gupta M.M., Goyal A., Altamimi A.S.A., Alzarea S.I., Almalki W.H., Kazmi I., Negi P., Singh S.K., Dua K. Sodium alginate-based drug delivery for diabetes management: A review // International Journal of Biological Macromolecules. 2023. V. 236. P. 123986. https://doi.org/10.1016/j.ijbiomac.2023.123986
- Hegde V., Uthappa U.T., Altalhi T., Jung H.-Y., Han S.S., Kurkuri M.D. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications // Materials Today Communications. 2022. V. 33. P. 104813. https://doi.org/10.1016/j.mtcomm.2022.104813
- Karim A., Rehman A., Feng J., Noreen A., Assadpour E., Kharazmi M.S., Lianfu Z., Jafari S.M. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds // Advances in Colloid and Interface Science. 2022. V. 307. P. 102744. https://doi.org/10.1016/j.cis.2022.102744
- Kianersi S., Solouk A., Saber-Samandari S., Keshel S.H., Pasbakhsh P. Alginate nanoparticles as ocular drug delivery carriers // Journal of Drug Delivery Science and Technology. 2021. V. 66. P. 102889. https://doi.org/10.1016/j.jddst.2021.102889
- López-Menchero J.R., Ogawa M., Mauricio J.C., Moreno J., Moreno-García J. Effect of calcium alginate coating on the cell retention and fermentation of a fungus-yeast immobilization system // LWT. 2021. V. 144. P. 111250. https://doi.org/10.1016/j.lwt.2021.111250
- Gao C., Qiu H., Zeng W., Sakamoto Y., Terasaki O., Sakamoto K., Chen Q., Che S. Formation mechanism of anionic surfactant-templated mesoporous silica // Chemistry of Materials. 2006. V. 18. № 16. P. 3904–3914. https://doi.org/10.1021/cm061107+
- Atluri R., Hedin N., Garcia-Bennett A.E. Hydrothermal phase transformation of bicontinuous cubic mesoporous material AMS-6 // Chemistry of Materials. 2008. V. 20. № 12. P. 3857–3866. https://doi.org/10.1021/cm702440n
- Sergeeva A., Sergeev R., Lengert E., Zakharevich A., Parakhonskiy B., Gorin D., Sergeev S., Volodkin D. Composite magnetite and protein containing CaCO3 crystals. External manipulation and vaterite → calcite recrystallization-mediated release performance // ACS Applied Materials and Interfaces. 2015. https://doi.org/10.1021/acsami.5b05848
- Garcia-Bennett A.E., Kupferschmidt N., Sakamoto Y., Che S., Terasaki O. Synthesis of mesocage structures by kinetic control of self-assembly in anionic surfactants // Angewandte Chemie International Edition. 2005. V. 44. № 33. P. 5317–5322. https://doi.org/10.1002/anie.200500113
- German S.V., Novoselova M.V., Bratashov D.N., Demina P.A., Atkin V.S., Voronin D.V, Khlebtsov B.N., Parakhonskiy B.V., Sukhorukov G.B., Gorin D.A. High-efficiency freezing-induced loading of inorganic nanoparticles and proteins into micron- and submicron-sized porous particles // Scientific Reports. 2018. V. 8. № 1. P. 17763. https://doi.org/10.1038/s41598-018-35846-x
- Rezk A.I., Obiweluozor F.O., Choukrani G., Park C.H., Kim C.S. Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: Towards cancer chemotherapy // International Journal of Biological Macromolecules. 2019. V. 141. P. 388–400. https://doi.org/10.1016/j.ijbiomac.2019.09.013
- Ilgin P., Ozay H., Ozay O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier // Journal of Polymer Research. 2020. V. 27. № 9. P. 251. https://doi.org/10.1007/s10965-020-02231-0
- Coppi G., Iannuccelli V., Bernabei M., Cameroni R. Alginate microparticles for enzyme peroral administration // International Journal of Pharmaceutics. 2002. V. 242. № 1–2. P. 263–266. https://doi.org/10.1016/S0378-5173(02)00171-0
- Mukhopadhyay P., Maity S., Chakraborty S., Rudra R., Ghodadara H., Solanki M., Chakraborti A.S., Prajapati A.K., Kundu P.P. Oral delivery of quercetin to diabetic animals using novel pH responsive carboxypropionylated chitosan/alginate microparticles // RSC Advances. 2016. V. 6. № 77. P. 73210–73221. https://doi.org/10.1039/C6RA12491G
Supplementary files
